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ON THE DIFFEOMORPHISM GROUPS OF CERTAIN
ALGEBRAIC SURFACES

by Wolfgang EBELING and Christian OKONEK

INTRODUCTION

It has become clear in the last years that there is an essential difference
between the topology and the differential topology of 4-manifolds. The new
understanding is based on fundamental ideas and results due to M. Freedman
and S.K. Donaldson. The difference between the two categories becomes
particularly apparent for the underlying 4-manifolds of complex algebraic
surfaces. There are e.g. algebraic surfaces whose underlying topological
manifolds carry infinitely many differentiable structures.

The object of this paper is to study in an analogous way the automorphisms
of the two categories, i.e. the symmetry groups of 4-manifolds. For the
topological category this is well understood. By the result of Freedman [F],
simply-connected closed oriented topological 4-manifolds are classified up to
homeomorphism by the isomorphism class of a lattice and the Kirby-
Siebenmann invariant in Z/2. If X is such a manifold, then the lattice in
question is L = (H,(X, Z), qx), where gy is the quadratic intersection form
of X. An orientation preserving homeomorphism of X induces an isometry of
L, and isotopic homeomorphisms induce the same isometry. Therefore there
is a natural homomorphism v,,, from the component group Top. (X) of the
group of orientation preserving homeomorphisms of X to the orthogonal
group O(L) of the lattice L. F. Quinn has shown that this homomorphism is
in fact an isomorphism [Q].

Now assume in addition that X is a differentiable manifold. Then one
considers the component group Diff,(X) of the group of orientation
preserving diffeomorphisms of X, and again there is a natural homomorphism
y: Diff . (X) = O(L). There are some classical results related to y which have
been obtained via traditional (surgery) methods: It was first observed by
C.T.C_. Wall [W] that y is surjective for S2 x S2, for the connected sum
P2 # P? of the complex projective plane P2 with another copy P2 with
reversed orientation, and for the connected sum of several copies of P2. Wall



250 W. EBELING AND C. OKONEK

- has also shown that y is surjective if X is of the form X = Y # S2 x §2
. where Y is a manifold whose quadratic form gy is indefinite or has rank
< 8 [W]. M. Kreck has proved that the image of y is isomorphic to the

group ]’)Tt:% +(X) of pseudo-isotopy classes of orientation preserving
diffeomorphisms [Kr]. |

In general it is therefore a difficult problem to determine the image of .

With the new methods provided by Donaldson, the following results were
obtained. Suppose that X is a complex algebraic surface with canonical class
kx. For a Dolgachev surface X, R. Friedman and J. Morgan have shown that
the image of v is of finite index in the subgroup of O(L) consisting
of isometries preserving { + kx}; this subgroup itself is of infinite index in
O(L) [FM]. Recently Donaldson has determined the image of y for a K3
surface X; he has identified it with a certain subgroup of index 2 in
O(L) [D].

The main result of this paper describes the image of y for other types of
algebraic surfaces. For the precise formulation of the result we refer to §4.
The proof is inspired by Donaldson’s proof. It has three main parts.

First we exhibit a large subgroup of y(Diff, (X)). This is the monodromy
group of a smooth family of surfaces containing X as a fibre. In many cases
we can determine the monodromy group of a suitable family. Moreover a
diffeomorphism can be constructed using complex conjugation. §1 deals with
these topics.

The next ingredient is the C*-invariance of the canonical class. This is
proved for certain algebraic surfaces using Donaldson’s SO(3)-polynomial
invariants and the results of [FMM]. This is the subject of §2.

Finally we show (in §3) that — 1 € O(L) is not induced by an orientation
preserving diffeomorphism if X is an algebraic surface with odd geometric
genus.

The main new ingredient is the use of Donaldson’s SO(3)-invariants, where
we rely on the recent nontriviality result of K. Zuo [Z].

We conclude the paper with two applications. The first one concerns the
problem of representing homology classes in H,(X,Z) by differentiably
embedded 2-spheres. For a second application we consider homeomorphic
surfaces X and X’ to which our results apply and for which we can determine
the images of the corresponding homomorphisms y. We show that if the
divisibilities of the canonical classes of X and X' in integral cohomology are
different (and hence the surfaces are not diffeomorphic), then the corres-
ponding images are non-conjugate subgroups of O(L), and vice versa. Finally
we give an example of two such surfaces.




ALGEBRAIC SURFACES 251

The first author is grateful to the Department of Mathematics and
Computing Science of the Eindhoven University of Technology, Eindhoven,
The Netherlands, where he did the work on this paper. The second author likes
to thank the IHES for its hospitality and support. We both thank J. Wahl for
a very useful remark concerning Theorem 12.

1. CONSTRUCTION OF DIFFEOMORPHISMS -

Let X be a simply connected smooth compact complex algebraic surface
with quadratic intersection form gx: H,(X,Z)— Z and canonical class
ky € HX(X,Z) = Hom(H,(X, Z),Z). The second homology group H,(X, Z)
endowed with the quadratic form gy forms a lattice which we denote by L.
Let O(L) be the corresponding group of isometries.

We introduce some notation: Let b, (X) denote the dimension of any
maximal subspace of Lg = L ® R on which gy is positive definite. Note that
by (X) = 2p,(X) + 1 where p,(X) is the geometric genus of X. The set of all
oriented maximal positive definite subspaces of Lg forms an open subset €
of the Grassmannian G°(b,(X),Lg) of oriented b, (X)-dimensional
subspaces of the vector space Lg. It has two components if gy is indefinite.
We define O’(L) to be the subgroup of O(L) consisting of those auto-
morphisms which leave each component of Q invariant. (For an equiv-
alent definition of O’(L) see [E2,4.1].) Let O,(L) be the subgroup of O(L)
consisting of automorphisms preserving k = ky. Finally ~we define
O,(L):= Ox(L) n O'(L). ‘ :

An important subset of Diff, (X) is the set of classes of diffeomorphisms
obtained by monodromy transformations of a smooth family containing X
as a fibre. By a smooth family we mean a smooth (in the analytic category)
proper holomorphic mapping n: & — T of connected complex spaces &
and T; m is the projection of a locally trivial differentiable fibre bundle,
so that for a point #, € T with X = n ~1(#,) there is a monodromy represen-
tation p: (T, t,) = Diff, (X). The image I" of yop in O(L) is called the
monodromy group of the smooth family. The monodromy group preserves
kx. It also preserves the components of Q: to see this consider a loop 7
representing an element in m,(7,4) and let g:X,, = X— X, be the
diffeomorphisms corresponding to ¢ e t. The mapping ¢~ (g;)(0)
e G° (b, (X), Lg) is continuous for every a € Q, hence I' C O}(L).

For certain algebraic surfaces there exist smooth families whose
monodromy group is the whole group O;(L). This is summarized in the
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following theorem. Among these surfaces there are certain iterated
ramified coverings of P! x P! or P2 which were studied by Moishezon [M]
and Salvetti [S]: Let (n,,...,n) be a sequence of positive integers. For
Moishezon’s construction, let X, = P! X P! and let C C P! x P! be the
divisor {pt} x P! + P! x {pt}. Construct a sequence B;: X; = X;_; of cyclic
coverings B; of degree 3 with nonsingular branch locus linearly equivalent to
Bi—10...0B8)*(B3n;C). Let X, = X, (ny,...,n,). We call a surface X,(n,,...,n,)
with n; > 2 for some i,1 <i<r (cf. [M, §4, Remark 3]) a Moishezon
surface. For Salvetti’s construction we need in addition to (n;,...,n,) a
sequence (dy, ...,d,) of positive integers satisfying d;|n; for all i = 1, ..., r.
Let Y, = P2, and choose smooth curves C; C P2 of degree n;,i = 1, ..., r, so
that C:= C; u ... U C, has only normal crossings. Construct a sequence
B;i:Y;— Y,y of cyclic coverings PB; of degree d; ramified over
Bi—19...09B)*C). A Salvetti surface is a surface Y, = Y,(n,,...,n,;d;,...,d,),
if at least one n; > 5 with the corresponding d; > 3 (cf. [S, Corollary to
Proposition 2]).

THEOREM 1. Let X be a simply connected algebraic surface with
P.(X) > 0, and suppose that X is either

(1) a complete intersection, or
(i) a Moishezon or Salvetti surface.

Then there is a smooth family w: & —> T with 7n=1(t)) =X for some
to e T with monodromy group

T =04L).

For complete intersection surfaces this is proved in [B,E2,E3], for
Moishezon surfaces see [M], and for Salvetti surfaces see [S], together with
[EO, Theorem 2.5 and §1].

Next we construct an orientation preserving diffeomorphism o: X — X
with o*(ky) = — kx. Suppose X is embedded in a complex projective space
P/ so that X is the zero locus of a finite set { fi,..., fur} of homogeneous
polynomials in the coordinates zg, ...,zy of PV,

Denote by o: C — C complex conjugation, and let X° C P¥ be the zero
locus of { f7,..., f3;}, where f7 is obtained from f; by applying ¢ to all the
coefficients. Then o:P~ — PV induces a diffeomorphism X — X°, also
denoted by o, which satisfies o*(kys) = — kx. If X is given by real
equations fi,..., fu, then o: X = X° = X is a self-diffeomorphism of X.
Such equations can be found if X is a complete intersection and if X is a
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Moishezon or Salvetti surface. (In the latter case the branch locus must be
given by real equations.)
Therefore we have:

COROLLARY 2. Let X be an algebraic surface as in Theorem 1. Then

O (L) - {o,,id} C w(Diff, (X)) .

2. INVARIANCE OF THE CANONICAL CLASS

S.K. Donaldson [D] has defined a series of invariants for certain smooth
4-manifolds. They are in particular defined for simply connected algebraic
surfaces X with p,(X) > 0. We assume from now on that X is such a surface.
There are two types of invariants according to the gauge group being SU(2)
or SO(3).

Let us first recall the SU(2)-case. Principal SU(2)-bundles over X are
classified by their second Chern class ¢,(P). For each /> [, using such a
bundle with ¢,(P) = /, Donaldson defines a polynomial

®/(X): Sym“(L) > Z

of degree d = d(l) =4l — 3(p,(X)+1), which depends only on the
underlying C>-structure of X and is invariant up to sign under y (Diff, (X ).
Donaldson shows that these invariants are nontrivial for all sufficiently
large [ [D].

We will need the slightly more complicated SO(3)-invariants. The simple
Lie group SO(3) is isomorphic to PU(2), so that one has an exact sequence

1-8t-UQ2)—SO3)—~1.

Let P be a principal SO(3)-bundle over X. Such a bundle has two characteristic
classes which determine it up to isomorphism: the second Stiefel-Whitney class
w,(P) € H?(X, Z/2) and the first Pontryagin class p,(P) € H*(X, Z).

Suppose that w,(P) is nonzero and choose an integral lifting ¢ of w,(P),
i.e. c € H¥(X,Z),c = w,(P) (here ¢ means the reduction of ¢ modulo 2).
Such a lifting exists since X is simply connected, and determines a U(2)-lifting
P of P, i.e. a U(2)-bundle P with £/S! = P and with ¢ = ¢,(P) [HH]. The
ChernAclasses of P are related to the characteristic classes of P by w,(P)
= ¢;(P) and p,(P) = cf(]s) — 402(16). In addition to this choose an element
a € Q. Donaldson shows that these choices give rise to a polynomial

(I)c,a,P(X): Symd(L) =3 &
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of degree d = — pi(P) — 3(p,(X) + 1) = 4c,(P) — 2 — 3(p,(X) + 1) with
the following properties ([D], see also [OV]):

@ . _,p(X)=— D, p(X) where — a is the subspace corresponding to
o with the opposite orientation.

(b) (I)c+2a,a,P(X) = S(a)(DC,Q,P X) where

1 if a*=0,
ela) = _
-1 if a2=+0.

(c) If f:X" — X is an orientation preserving diffeomorphism then

Doy, ¥, ¥y (X)) = [*®. o p(X) .

Donaldson’s nontriviality result for the SU(2)-invariants has been extended
to the SO(3)-case by Zuo [Z]:

THEOREM 3 (Zuo). Let X be a simply connected algebraic surface with
P.(X)>0. If ce H"'(X,Z),c +#0, and P is a principal SO(3)-bundle
corresponding to a U(2)-bundle P with Ci (13) =c and cz(IS) suffi-
ciently large, then the polynomial ®. . p(X) is nontrivial.

Now suppose that X has a big monodromy group in the sense of Friedman
and Morgan [FMM]. Then the SU(2)-invariants ®,(X) of X are complex
polynomials in the canonical class kxy and the quadratic form gy [FMM]. In
the SO(3)-case one finds the following result:

THEOREM 4. Let X be a simply connected algebraic surface with
Po(X) > 0, wo(X) # 0, and with a big monodromy group. Then, for a
principal SOQ3)-bundle P,

Dy ,,o,p(X) € Clkx,qx] .

COROLLARY 5. Let X be a simply connected algebraic surface with
pe(X) >0 and with a big monodromy group. Then {+ kx} is invariant
- under y(Diff (X)), if kx divides a nontrivial polynomial invariant.

The corollary follows from the fact that if ky divides a nontrivial poly-
' nomial invariant, then it is its only linear factor up to multiples (cf. [FMM]).
When are the assumptions of Corollary 5 satisfied? It follows from
2Theore~m 1 that the surfaces listed in this theorem have big monodromy. i




ALGEBRAIC SURFACES 255

Let X be any simply connected algebraic surface with a big monodromy group.
If p,(X) = 0 (mod 2) then the degree of ®,(X) is odd. If p.(X) =1 (mod 2)
and k% =1 (mod 2) then the degree of @y, q r(X) is odd. So kx divides
®/(X) or @, q r(X) in these cases.

Remark. Theorem 4 and its corollary remain true for polynomials
@, o p(X) if c € HX(X,Z) is a class with ¢ # 0 such that f*(c) = ¢ for all
f e y(Diff,(X)). The question which elements of H*(X,Z) or H*(X,Z/2)
have this invariance property will be treated in §4.

3. NON-REALIZABLE ISOMETRIES

We shall show that for a simply connected algebraic surface with odd
geometric genus, — 1 is not induced by an orientation preserving diffeo-
morphism. For K3 surfaces this was shown by Donaldson in the proof of
[D, Proposition 6.2]. There he proves the nontriviality of a certain polynomial
®. o p(X) for a K3 surface X. With Zuo’s nontriviality result (Theorem 3) we
are able to generalize this as follows. ‘

THEOREM 6. If X is a simply connected algebraic surface with
p(X) =1 (mod 2) then -1 ¢ y(Diff,(X)).

Proof. Suppose that there is an orientation preserving diffeomorphism
f: X — Xsuchthat f* = — 1. Let c € H!(X, Z) be a class with ¢ # 0, and
choose a principal SO(3)-bundle P with w,(P) = ¢ such that @, , p(X) is
nontrivial. This is pdssible according to Theorem 3. Then

S*@c,q,p(X) = (= D@ o, p(X) ,

since @, , p(X) is a polynomial of degree d on L.
On the other hand, by §2(¢)

f*q)c,a,P(X) = Qf*c,f*(l,f*P(X) .

We have f*c = — cand f*a = — o because f* = — 1 and the dimension of
a is odd. Since f is orientation preserving and f* = —1 we find
S*pi(P) = py(P) and f*w,(P) = wy(P), so that the bundle S*P is
isomorphic to P. Therefore
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S 0, p(X) = D¢ o p(X) .
Applying §2(a) and (b) with @ = — ¢ we get
J¥®ca,p(X) = = Do p(X) = — (= 1D 4 p(X) .
By assumption ®, , »(X) # 0, so we must have
(=D = (=17,

Now d =4c, — ¢ — 3(1 + py(X)) implies that (—1)7«X =1, ie. p,(X)
= 0 (mod 2). This proves Theorem 6.

4. DIFFEOMORPHISM GROUPS OF SOME ALGEBRAIC SURFACES

In §1 we saw that the image of \y contains the group O((L) - {c,,id} in
many cases. In §2 we showed that under certain conditions {=+ ky} is
invariant under y (Diff, (X)). Finally we proved in the previous section that
for algebraic surfaces of odd geometric genus — 1 is not induced by an
orientation preserving diffeomorphism. It turns out that these facts suffice to
determine the image of .

PROPOSITION 7. Let X be a simply connected algebraic surface which
satisfies the following conditions:

(i) OyL) - {o,,id} C y(Diff, (X)),

() {+ kx} is invariant under y(Diff, (X)),
(i) -1 ¢ y(Diff. (X)).

Then

w(Diff (X)) = Ox(L) - {0,,id} .

, Proof. Let g = —o,. Then g e O((L), but g ¢ y(Diff, (X)), since
— 1 ¢ y(Diff . (X)). Hence by (i), g &€ O,(L). Therefore

Ok(L) = O(L) - {g 1d} .

Now let 4 € y(Diff, (X)). By (ii) either A(k) = k or h(k) = — k. In the first
case h € Oy(L). Moreover, h € O;(L) since otherwise h = ghy, for some
ho € O(L) which would imply g € v (Diff (X)), a contradiction. In the
second case we have i’ = ho, € Oy (L). By the same argument as before we
see that h’ e O(L). Hence h=h"o, € OL) " {o,,id}. This proves
- Proposition 7.

| Putting everything together we get the main result of our paper.
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THEOREM 8. Let X be a simply connected algebraic surface with
Pe(X) =1 (mod 2) and k%=1 (mod2). If X is either

(i) a complete intersection, or
(i) a Moishezon or Salvetti surface,

then
y (Diff, (X)) = O4L) - {o,,id} .

Example. Consider a complete intersection surface X of multidegree
(dy,...,d,). Using the formulas of [E4], we can translate the conditions
of Theorem 8 into numerical conditions on the degrees d;. The condition
k% =1 (mod 2) is equivalent to

(1) d=1(@mod2) for i=1,...,r.

Write d; = 2¢; + 1 (i=1,...,r). Then p,(X) = 1 (mod 2) is equivalent to the
following two conditions

(2) Y ee;=1(mod 2) ,
i<j
(3) either 3 |d; for some j, 1 <j<r, or 3| Y.  ele+1).

In particular there is an infinite sequence of complete intersection surfaces
satisfying the conditions of Theorem 8, e.g. the surfaces with (d,,d,)
=3,3+4m),me Z,m > 0.

We leave it to the reader to formulate similar conditions for the case (ii)
of Theorem 8.

We shall give two further applications of the results of the first three
sections. |

Let X be a surface as in Theorem 1 and denote the symmetric bilinear form
corresponding to gy by ( , ). Define L':=kerky=k; C L, and let
A C L’ be the set of vanishing cycles of X (cf. [EO]). The pair (L’, A) is then
a vanishing lattice in the sense of [El, Definition (2.1)]. This means the

following. If 8 € A, then ¢(§,8) = — 2 and one has an associated reflection
ss defined by

Ss(x) =x + (x,0)8

for all x e L’. Let I'y denote the subgroup of O(L’) generated by these
reflections s5, 6 € A. Then (L', A) satisfies the following conditions:
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(1) ¢8,86) = —2 for all § € A.
(i1) A generates L.
(ii1) A is a I'-orbit.
(iv) Unless rank L’ = 1, there exist 8, 8, € A with (&;,8,) = 1.

As in Wall’s paper [W] we can derive from a statement about
vy (Diff (X)) a statement about the possibility of representing homology
classes by embedded 2-spheres.

THEOREM 9. Let X be an algebraic surface, and let x € H,(X,Z)
be a class with qx(x) = —2. If x s represented by a differentiably
embedded 2-sphere, then x ek - Conversely, if X is a surface as in
Theorem 1, if xeky, and if there exists a class y € ky with

(x,y) =1, then x can be represented by a differentiably embedded
2-sphere.

Proof. Let xe Hy(X,Z) be a class with gyx(x) = — 2. Suppose
that x is represented by a differentiably embedded 2-sphere S. Let j: S—> X
' be the embedding. The normal bundle Ng of S in X can be regarded
as a U(l)-bundle. Therefore the first Chern class ¢;(Ng) of the normal
bundle is defined. Let § € H?(X,Z) be the Poincaré dual of x. Then by
[H, Theorem 4.8.1] ¢;(Ns) = j*¢. If Ty and T denote the tangent bundles
of X and S respectively, then we have j*IEX = wo(j*Tx) = wo(Ts) + wyr(Ns).
This implies (kx,E> = %(S) + £2 = 0 where %(S) denotes the Euler
characteristic of S. It follows that x € k% .

Conversely, let X be a surface as in Theorem 1. Then (L', A) is a complete
vanishing lattice in the sense of [El, Definition (2.2)]. This follows for
complete intersection surfaces from [B, E3], for Moishezon surfaces from [M],
and for Salvetti surfaces from [S] (see also [EO]). By [E1, Proposition (2.5)]
we conclude that

A={veL |gxw)= -2 and <(u,L')=1Z}.

Therefore, if x € L’ .and if there exists a y € L’ with (x,y) = 1, then x € A,
i.e. x is a vanishing cycle. But vanishing cycles are certainly represented by
spheres. This proves Theorem 9.

Remark. We have even proved more, namely that every x satisfying the
latter conditions of Theorem 9 is a vanishing cycle.

Our second application concerns a question which was posed by
E. Brieskorn. First we show:

- N
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PROPOSITION 10. Let X be an algebraic surface as in Theorem 1.
Let xeHom(L,Z). If {xx} is invariant under v (Diff (X)), then
x = My for some L e Q, unless ky=0,kx#0.

Proof. Let UC Ly=L"&® Q be a subspace of Ly which is invariant
under y(Diff,(X)). We show that either U= L, or U is contained In
(Lo)* ={veLly|<v,w) =0 for all we Ly} Let A CL" be the set of
vanishing cycles. If § € A is not orthogonal to U then there exists a y € U with
(8,y) # 0. From s5(y) =y + (»,8)8 € U it follows that § € U. Since I'y
acts transitively on A, we obtain A C U. But A generates L’ so that we must
have L, = U.

Now let x € Hom (L, Z) be invariant up to sign under I'x C y(Diff, (X)).
If kxy=0then L = L"and (L")* = {0}. Hence it follows from what we have
just shown that x = 0. If k% # 0 then we can write x = Ay + X, where
A e Qand x, e Hom(L',Z) ® Q. Now ky is invariant under I',, so we see
that { + x,} is invariant under I'sy. Since (L") + = {0}, it follows that x, = O.
This proves Proposition 10.

Now (L', A), where A = {8 |8 e A}, is also a vanishing lattice. So we can
derive the following proposition by the same arguments.

PROPOSITION 11. Let X be an algebraic surface as in Theorem 1. Write
kx = nxXx for some primitive element xy e Hom(L,Z) and some

non-negative integer ny. If x € Hom(L,Z) is an element with g(x) = x
for all g e y(Diff (X)), then x e€{0,xx}, unless Kf\/ =0,ky # 0.

Consider two simply connected algebraic surfaces X and X’ with corre-
sponding lattices Ly and Ly.. Let A: X = X’ be an orientation preserving
homeomorphism between X and X’. Then A,: Ly = Ly is an isometry. For
a subgroup G C O(Ly) we define G”*:= hy'Gh,. Note that we have
k% = k%, since k% can be expressed in terms of the rank and signature
of Ly.

THEOREM 12. Let X, X' be algebraic surfaces as in Theorem 8, and
suppose that kﬁ( = kﬁ(, #0. Let h:X— X' be an orientation preserving
homeomorphism. Then y(Diff, (X)) and y(Diff,(X"))" are conjugate
subgroups in  O(Ly) if and only if the divisibilities of ky and kx in
integral cohomology are equal.

Proof. Suppose that y(Diff (X)) and y(Diff, (X"))# are conjugate by

g€ O(Ly), ie. y(Diff (X)) = (w(Diff+(X’))’7*)g. Let fe \u(Diff+(X')).
Then



260 W. EBELING AND C. OKONEK

(h.g) "' f(h.g)kx) = * kx,
since { &+ kx} is invariant under y(Diff, (X)). Therefore

S (n8) kx)) = £ (h.g) (kx) .

This holds for every f € y(Diff,(X")), so that {+ (h,g)(kx)} is invariant
under y (Diff, (X’)). We conclude from Proposition 10 that (h,g) (kx) = My
for some A € Q. Now

Ky = k% = ((h,e) (ky))? = M2k%, ,

hence A = £ 1, and it follows that the divisibilities of ky and k- in integral
cohomology are equal.

Conversely, let kxy = nyky and ky» = ny- Ky  for some primitive elements
Ky € H*(X,Z) and xy- € H*(X',Z) and some nonnegative integers ny and
. ny- respectively, and assume that ny and 7, are equal. Let Ay and A, be the
Poincaré duals of ky and xy, and let K and K’ be the one-dimensional
sublattices of Ly spanned by Ay and 4i'(hy ) respectively. Let g: K = K’
be the homomorphism defined by g(Ax) = &x'(Ax). Then (g(hy),ghy))
= (Ax,Ax ), hence g is an isometry. Now b, (X) > 3, so that by a generali-
zation of Witt’s theorem [N, §1.14, in particular 1.14.4, §1.16] g can be exten-
ded to an isometry g € O(Lx). One can easily verify that y(Diff, (X)) and
v (Diff , X)) "= are conjugate by g. This proves Theorem 12.

COROLLARY 13. Let X be an algebraic surface as in Theorem 8. If an
element h e O'(L) normalizes w(Diff,(X)), then h is contained in
y (Diff . (X)).

Proof. This follows from Theorem 12, because

y(Diff, (X)) = OUL) - {o,,id} .

Remark. Since — 1 is not contained in y(Diff, (X)) but in the normal-
izer Norm (y (Diff . (X))) of y(Diff, (X)) we obtain from Corollary 13:

Norm (y (Diff, (X)))/y(Diff (X)) = Z/2 = { +id} .

Example. Let X be a complete intersection in P6 of multidegree
(7,7,5,3). Let X' be the Salvetti surface Y,(10,10,6,5;5,5,3,5). Both
surfaces have k2 = 165375, p, = 24499, but the divisibilities of the canonical
classes are 15 and 21 respectively. Therefore the surfaces are homeomorphic,
but not diffeomorphic. Both surfaces satisfy the assumptions of Theorem 8.
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We conclude from Theorem 12 that the subgroups of O(L) corresponding to
v (Diff, (X)) and y(Diff (X")) are not conjugate. This example was found
by a computer search.
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