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(2.15) n2:= S £ y - Resco —7W) \|f(ß(y))f(*(K, U))
u Y \ F(x)

where Y ranges over monic polynomials of degree D + 1 over GF(q) (with
D degF) and U ranges over nonzero polynomials of degree < D over GF(q).
Write k deg U and

(2.16) Y(x) yD + i*D+l + yDxD + + To, (yD+1 1)

In the notation of (2.11),

(2.17) Vi/ |ß(r) - Res^-^j \J/ \y2D/2-yD-\ + E ak + 2-iyD+ i-/j •

For fixed U, the sum over Y in (2.15) vanishes unless U(x) 1. When
U(x) 1, each member of (2.17) equals \\f(a2 + axyD + y2D/2) with

a, - a(F) a2 a(F)2/2 + ß(F)

Therefore

(2.18) n2 ?Dv(ß(F)) S \v(y2/=güV(ß(F))0(2)G(te- l)/2)
yeGF(q)

On the other hand, by the proof of the last formula in [1, §2], we have

(2.19) [i2 s2(V)c(F)t(R(V,F')) I] G(-ord„K)d^
u\F

Comparison of (2.18) and (2.19) yields (2.8b).

§3. Proof of Theorems 1.1, 1.1a, 1.16

Let d denote the order of %c. The following lemma gives useful formulas

for Pn(a,b,c), Pn(a,c), and Pn(c) in the case d\n. The proof of (3.1Z?) is

elementary but for (3.1) and (3.la) we require the Hasse-Davenport product
formula [7, (7)].

Lemma 3.1. Let d be the smallest positive integer such that
cd 0 (mod q - 1). If d\n, then
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(3.1) P„(a,c)

{-J{ad,bd))n/dx(-l)c(;)g"-"/rf
G to)"

^n-2n/</x(_ l)c(")

if ad#0 (mod 1)

orM# 0 (mod 1)

if ad bd0

(mod g - 1)

T* n{a,c)

G(c)"

(-tarf(<i)GM))"/rfx(- l)c^-*g"~"/rf

G(c)"(3.1 a)

and

(3.16)
C(c).

Proof. By the Hasse-Davenport product formula [7, (7)],

(-4)(2J)G((g- l)/2))"/rfT(- l)cC)g"-"/o1

(3.2) n Gto+yc) - xa"(d)G(ad) [] G(/'c)
j=0 J=0

It follows from (1.4) and (3.2) that

(3.3)

Thus

-G{ad)G(bd)G{ad+bdt(-1)'

pAa,b,c) —
(2)

(3.4) Pd(a,b,c)

qd~2x(- l)c(2)

G(c)°

-J(ad,bd)x(- 1

if ad bd 0

(mod <7~1)

G{cY
otherwise

As d\n, we have Pn(a,b,c) Pd(a,b,c)n/d. Since

X(_ i)<»<</-0/2 T(- i)c(2)

(3.1) follows. The proof of (3.1<7) is similar. If in place of (3.2) one uses the

formula

(3.5)
G(jc)

$(d) TT -Ai <D(2)G(to-l)/2)

which is a consequence of quadratic reciprocity, then (3.1Z?) readily
follows.
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For positive integers n, a, b, c, define the double sums

(3.6) Y:~Z Z<Q(VYQ(,
Q P

(3.6a) F, : £ I v(a(ß))T(e(0)'*(ß<,/>))
Q ^

and

(3-66) r2: £ J>(ß(ß))T(Ä(ßSf>))
Q P

where here and in the sequel, P and Q range over monic polynomials over
GF{q) with

(3.7) degP n - 1 degQ n

In the next lemma, we evaluate Y, Yi, and 72 in terms of the Selberg sums

Sn(a, b, c), Sn(a, c), and £„(<:), respectively.

Lemma 3.2. Assume that c^0(mod<y-l) and that for all j with
b + je ^ 0 (mod q - 1). Then

(3.8) Y
t( — l)"" + c(^S„(a,à,c)G(c)"/G(cn)

("\ G(c)n
t(- l)a" + c(2) — {Sn(a,b,c)+

qG(cn)

|t(- l)cV) sn{a,c)G{c)n/G(cn) if d X n

(3.8a) Y, < c("\ G(c)n
I t( 1) w {S„(a,c) + (q - l)Pn(a,c)}

qG(cn)

and

x(- 1 )c("2hn(c)G(c)"/G(cn), if dX n

Yl V- 1)C(D {S„(c) + (q- l)P„(c)} I

qG{cn)

Proof. Note that d > 1 by hypothesis. Write

(3.9) Y A+B,
where A is the sum over those Q which are not dth powers, and B is the sum

over those Q of the form Q Wd (for monic W with deg W n/d).
Observe that Q is a dth power if and only if V — Qc is a (q - l)ih power. For
those Q for which V is not a (q — \)th power, there can be a contribution
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to A only if Q is squarefree, since L(t, V) is a polynomial of degree (degF 1).

Thus

AI x(Ôa(0)ô"(l))e(Ôc) •

Q squarefree

By (2.8), it follows that

(3.10) A t( 1 )an
+ cWS„(a,b,c)G*.

If d n,then Q cannot be a d'hpower, so Y A. Moreover, if then

cn^O (mod q -1), so G*(c)"/G*(cn) G(c)"/G(cn). This proves (3.8)

in the case d \ n.

Suppose now that d\n. Then

B= Y.<wad{<d)wbd{\))Y,<R{wcd,p))
w p

where W ranges over monic polynomials over GF(q) of degree n/d. Thus B

is the coefficient of tn~xzn/d in

Y,^(Uad{0)Ubd(\))L{t, W~x)zdQgU
u

where U ranges over all monic polynomials over GF(q). If bd 0 (mod q - 1),

then b + cj 0 (mod q- 1) for some j, 0 ^ j ^ d - 1, which contradicts the

hypothesis. Thus bd # 0 (mod#- 1), so by (2.7),

B {-J(ad,bd)y/dx(-\)anqn-n/d-x{l-q)

Since G(cn) - 1, it follows from (3.1) that

(3.11) B t( — l)a" + c(2) —P„(a,è,c) 1)
qG(cri)

By (3.9)-(3.11), the proof of (3.8) is completed. The proofs of (3.8a) and (3.8Ö)

follow similarly.

By reversing the order of summation in the double sums Y, Yl3 and Y2}

we can express them in terms of Sn^t(a + c,b + c,c), Sn-\{a + c,c), and
iS/?_i(c), respectively, as the following lemma shows.

Lemma 3.3. Assume that c # 0 (mod q - 1) and that for all j with
0 ^ j ^ n - 1, b + je ^ 0 (mod q - 1). Then
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(3.12)
Y t( — l)an + cW Sn„t{a + c,b + c,c)G

- G(a + b + (n- 1 )c)/q

(3.12a) Y, t(-1 )c(^S„-,(a +c,c)G,
and

(3.12 b) Y2 t(-1)c^)s„_1(c)G(c)"-'4)(2)G((ç-1)/2)

Proof. We have

(3.13) y- I It(R(KQ))
p Q

where

K= xa(x- 1 )bPc

By hypothesis, V is not a (q - \)th power, so L(t, V) is a polynomial of
degree (deg/7- 1). Thus we may restrict P to be squarefree and prime to
x(x— 1) (so degF= n + 1), as no other P contribute to Y.

Suppose that a # 0 (mod# — 1). Then V is primitive and (3.13) yields

Y=£s{V)
P

so (3.12) follows by (2.8).
Now suppose that a 0 (mod# - 1). Then by (3.13) and (2.6),

Y= - £s((x-l)ftP<OT(i?((x-l)".Pc,x))
p

and again (3.12) follows by (2.8).
To prove (3.12a) and (3.126), one proceeds similarly, using

(3.13a) F, £ 2>(a(ß))T(j
P Q

and

(3.136) Y2 I EV|/(P(Q))t(Â(Pc,Ô))
p Q

in place of (3.13).

Proof of Theorems 1.1, 1.1a, 1.16.

To prove Theorem 1.1, it suffices to prove that Sn(a,bfc) P„(a,b,c)
under the assumption
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b +jc& 0 (mod q- 1) for all j with 0 < j ^ n - 1

in view of [10, Lemmas 2.1 and 2.2]. Assume also that

c # 0 (mod# - 1)

since the result has been proved in [5] for c 0 (mod# - 1).

Theorem 1.1 is clear for n — 1, so let n > 1 and assume as induction

hypothesis that

Sn _ (a + c, b + c, c) Pn _ i (a + c, b + c, c)

By (3.8) and (3.12), if d )f n,

G(a
S„{a,b,c)P„_,(a+ c,b + c,c)——

qG(c)

P„(a,b,c)
whereas

Sn(a,b,c) + (#- 1)7^(0, Z?,c) qPn(a,b,c) if d | n

Thus Sn(a,b,c) Pn(a,b,c) in both cases, proving Theorem 1.1. The proofs
of Theorems \Aa and 1.1Z? follow similarly, from (3.8a), (3.12a) and (3.8b),
(3.126) in place of (3.8), (3.12).
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