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§2. L-FUNCTIONS

Throughout this section, V denotes a monic polynomial over GF(g), and
v ranges over the distinct monic irreducible factors of V over GF(q). Write

2.1) V=TJlvev, F=F,=]]v.

|V v|V

If no exponent ord, V in (2.1) is divisible by g — 1, then V' is said to be
primitive. Note that V' = 1 is primitive. For any monic polynomial

(22) W: W(x):xn+wn_lxn—1+wn_2xn—2+ ... +WO

over GF(qg), set

(2.3) a(W)y=w,_1, BWW)=wi_1/2—W,_,.
Define the L-functions
- (2.4) L(t, V) = Y t(R(V, W)) iV,
. w
(2.4a) Li(t,V) = Y w(a(M)T(RV, W))tde?
(2.4b) Ly(t, V) = Y w(BM)T(R(V, W))tdesW
w

where in each sum, W ranges over all monic polynomials over GF(q), and
R(V, W) is the resultant of V and W. It is easily checked that

L) =>0A-gn"', LitD=1,

(2.5)
L(t,) =1+ 6Q)G(g—1)/2)1 .

 Since the summands in (2.4), (2.4a), (2.4b) are multiplicative in W, each of
the L-functions has an Euler product expansion. Thus we have the following
- result.

| LEMMA 2.1. Write V= GH where G and H are monic, relatively
prime polynomials over GF(q) with G primitive and H a (g— 1)th
- power. Then

- (2.6) L, V)= L(tG) I‘—[ (1 — T(R(G,U))tdeg“) ,
‘ viH
- (2.60) L, V) = Lit,6) [] (1 — w(a®)T(R(G,v))1%2)

v|H
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and

(2.6b) L,(t,V) = Ly(t, & [[ 1 = w(B)T(R(G, v))t%2) .

v|H

The next lemma evaluates certain generating functions defined in terms of
the function L (but not L, or L,).

LEMMA 2.2. For all integers a,b > 0,

Z (W) Wb(1))L(t, Wa-1)zdeeW

w

1 +1(=1)4J(a,b)z

, If a#0(@modg-1)
07 = (1—qgt) 1 +1(=1)*J(a, b)zt) or b0 (mod g—1),

(1-2z)2(1 —qz1)
(1-gt) (1—qz) (1-zt)*°

if a=b=0(modg—-1),

L w(@(W) T (W)L, We-1)zée
w
1+ G@)z
(1—gt) 1 +79(b)G(a)zt)

2.7a)

and

1+ q)(2b)G((q— 1)/2)z
(1—gt) (1 +0Q2b)G((g— 1)/2)zt)

where in each sum, W ranges over all monic polynomials over GF(q) and
o, B are as defined in (2.3).

(2.7b) L w(B(W?)L(t, Wi~1)zde? =
w .

Proof. Fix monic V = V(x) and let w range over monic irreducibles over
GF(q). By (2.6),

Y T (R(V, W)L (t, Wa~1)gdeeW

= L(t, 1) EzdegWT(R(V, W)) H (1 _ tdegw)
74

w| W

=L, DY [T =) (2(R(V, w))zdeew)ordn )

W ow|Ww

=L(f,1)H{1+(1—tdegW) y

=1

(T (R(V’ W))Zdegw)m }

= L(t,1) Hl ~ T(R(V, w)) (zt)dee _ L, 1)L(z,V)
U1 — T(R(V, w))zdeew a L@t V) .
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Taking V' = x%(x—1)?, we easily deduce (2.7). The proofs of (2.7a) and
(2.7b) are similar. [

It is shown in [1, Prop. 2.1] that if V'is primitive of degree > 0, then L(z, V)
i1s a polynomial in ¢ of degree (degF — 1) with leading coefficient

(2.8) e(V) = o(F)T(R(V,F))G*(deg V)~ ' [ G*(ord, V)dev |
v|F
where

G*@):=q/G(—a) .
By (2.6), if V' is a (g — 1)th power, then

L(t,V)=(1—qt) ' ] A — rdesv) |

v| VvV

but otherwise L(¢, V) is a polynomial of degree (degF — 1). The following
' lemma shows that for all V, L(¢, V) and L,(¢, V) are polynomials of degrees
degF and degF + 1, respectively. Moreover, for primitive V # 1, the
coefficient g,;(V) of #d¢f in L,(¢, V) and the coefficient g,(V) of ¢!+deef jp
L,(z, V) are given explicitly.

LEMMA 2.3. For each monic polynomial V over GF(qg), L(t,V) and
L,(t,V) are polynomials in t of degrees degF and 1 + degkF,
respectively. If moreover V + 1 is primitive, the leading coefficients of
L(t,V) and L,(t,V) are given by

(2.8a) e1(V) = w(a(F)o(F)t(R(V, — F)) ][] G*(ord, V)deev |
v|F ;
and
(2.8D) (V) =02)G(g-1)/2)y(BE))cF)T(R(V,F")) l|—I G*(ord, V)deev,

respectively, where G*(a) = q/G(— a).

Proof. Fix an integer m > deg F and fix a € GF(qg). Since m > degF, it
is not hard to see that the monic polynomials W over GF(q) of degree m with
o (W) = a run through each residue class modulo F exactly g ~!-deF times.
Since R(V, W) depends only on the residue class of W modulo F, the
- coefficient of 7 in L,(¢, V) thus equals
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Y oy TtR, W)

W monic
deg W =m
— qm—l-—degF Z T(R(V, U)) Z y(a) =0.
U a e GF(q)
deg U < deg FF

Therefore L,(¢, V) is a polynomial of degree < degF". Similar reasoning with
B(W) in place of a(W) shows that L,(Z, V) is a polynomial of degree
< 1 + degF. In view of (2.5), (2.6a) and (2.6D), it remains to prove (2.8a) and
(2.8b) for primitive V # 1.

To prove (2.8a), consider the double sum

Ux) W(x)

(2.9) hy:= ; ;\p (— Res. 0

) W (@M)TRY, V) ,

where W = W(x) ranges over monic polynomials of degree D : = degF over
GF(g) and U = U(x) ranges over nonzero polynomials of degree < D over
GF(q). Write k = degU,

(2.10) Wx) = wpx? + wp_ 1 xP=1 4+ -+- +wy, (Wp=1),
and

xkU(1/x)
(2.11) =gyt ax+ ax+ -

xPF(1/x)

Note that a, # 0 is the leading coefficient of U(x). We have

UW k+1
(2.12) Y (G(W) - ReSmT) =V (WD—I + Z ak+1—iWD—i) .
i=0
For fixed U, the sum over W in (2.9).thus vanishes unless U(x) = — 1. When
U(x) = — 1, each member of (2.12) equals y(a;) = y(a(F)). Therefore
(2.13) wy = gieFr (= 1)deVy(a(F)) .

On the other hand, by the proof of the last formula in [1, §2] (here primitivity
i1s used), we have

(2.14) w =, (Mo(F)T(R(V,F)) ] G(— ord, V)deev

v|F
Comparison of (2.13) and (2.14) yields (2.84q).

To prove (2.8b), consider the double sum
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Ulx) Y(x)

(2.15) hai= ) YW (— Res.. v TRV, V)
U Y

where Y ranges over monic polynomials of degree D + 1 over GF(g) (with
D = deg F) and U ranges over nonzero polynomials of degree < D over GF(q).
Write k = deg U and

(2.16) YX) = ypr1xXP*t + ypxP + - + 30, (pr1=1).

In the notation of (2.11),

UY k+2
(2.17) v (B(Y) - Resoo?) =V ()’f)/z —Vp-1+ Z ak+2—in+]—i) .

i=0
For fixed U, the sum over Y in (2.15) vanishes unless U(x) = 1. When
U(x) = 1, each member of (2.17) equals y(a, + a,y, + y3/2) with
a=—alF), a=aF)*/2+BEF).

Therefore

(2.18) we=qPu(BE) Y v(r*/2) =q?v(BE)QG(g-1)/2).

yeGF(q)
On the other hand, by the proof of the last formula in [1, §2], we have
(2.19) wy = &,(V)a(B)T(R(V,F")) [[ G(— ord, V)deev

v|F

Comparison of (2.18) and (2.19) yields (2.8b).

§3. PROOF OF THEOREMS 1.1, 1.1a, 1.1b

Let d denote the order of t¢. The following lemma gives useful formulas
for P,(a,b,c), Pu(a,c), and P,(c) in the case d|n. The proof of (3.10) is
elementary but for (3.1) and (3.1a) we require the Hasse-Davenport product
formula [7, (7)].

LEMMA 3.1. Let d be the smallest positive integer such that
cd=0 (modg—1). If d|n, then
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