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L’Enseignement Mathématique, t. 37 (1991), p. 235-248

THE EVALUATION OF SELBERG CHARACTER SUMS

by Ronald J. EVANS

ABSTRACT. The evaluations of Selberg character sums conjectured on
p. 207 of Enseignement Math. 27 (1981) are proved.

§1. INTRODUCTION

Many of the classical special functions over C have character sum analogs
over finite fields. For example, the Gauss and Jacobi sums defined in (1.1)
are analogs of the gamma and beta integrals

1

= dx
I'(a) = g e *x*—, PB(a,b) = S x?(1 —x)?
X

0 0 X(I—X).

Some identities for character sums over finite fields seem more difficult to
prove than their classical counterparts; compare, e.g., the Hasse-Davenport
product formula for Gauss sums [7, (7)] with the Gauss multiplication formula
for gamma functions. The identities for n-dimensional Selberg character sums
given in Theorems 1.1, 1.1a provide further examples. Their counterparts are
the well known n-dimensional Selberg integral extensions of the gamma and
beta integral formulas.

The case n = 3 of the Selberg character sum identity in Theorem 1.1 has
been used to evaluate a sum connected with the root system G, [8]. The case
n = 2 is equivalent to an analog of Dixon’s summation formula [11, (2.1.5)]
involving hypergeometric ;F, character sums over finite fields. We remark
that hypergeometric character sums have been used, e.g., in the computation
of the number of points on hypersurfaces [13], [12], in proving congruences
for Apery numbers [14], and in graph theory [6], [9].

Let GF(q) be a finite field of g elements, where g is a power of an odd
prime. Fix a multiplicative character 1: GF(g)* = C* of order ¢ — 1 and a
nontrivial additive character y: GF(q) — C*. Extend 1 by defining t(0) = 0.
Let ¢ = 1@~1’2 be the quadratic character on GF(q). For all integers a, b,
define the Gauss sums G(a@) and Jacobi sums J(a, b) by
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(L) G@= Y 1@wE, Jab= Y wE(l-8°>.

£EeGF(g)* 1#EeGF(g)*

For integers n > 0 and «, b, ¢ > 0, define the Selberg character sums

(1.2) S.(@, b,c) = Y, 1((—- DVEQ)“E(1)°AL)d(Ag) ,
E
(1.2a) Sa(a,¢) = Y wie,-1)T(EWO0)*AS)d(Ag) ,
E
(1.2b) S.0) = Y wel_ /2 —e,_)T(Ap)d(Ag) ,
EA

where each sum is over all monic polynomials
(1.3) E=E@ =x"+e,_1Xx"" L+ e, ,x""2+ -+ + ¢

of degree n over GF(q), and where Ay denotes the discriminant of £ (with
the convention that Az =1 when deg(E) < 1). Define the following
products:

n—1 s . . — .
14 Poabe= [ SUHIGE+/IGE+jOGla+b+(n—1+)))

’

j=0 qG(c)
"1 G(a + jo)G(c + jc)
1.4 P,(a,c) = y
( %) (@) jl;I() G(c) ' i
(1.4b) P.(c) = nﬁ G(c+jo)o(2)G((g—1)/2) ’
J=0 G(o)

where G denotes the complex conjugate of G.

The object of this paper is to prove Theorems 1.1, 1.1a, and 1.1b below.
These results, analogs of n-dimensional integral formulas of Selberg [3, (1.1),
(1.3), (1.2)], [2], verify conjectures made in 1981 [7, (29), (29a), (29b)]. The
decisive breakthrough came in 1990 when Anderson [1] proved a somewhat
weakened form of Theorem 1.1. The proofs here are based on modifications
of the method in [1]. The modifications are designed to handle complications
arising from ‘‘imprimitive’’ L-functions (see §2).

THEOREM 1.1. For all integers n,a,b,c > 0, if none of

a+b+n—-1+)c (O<j<n—1) )

- are divisible by q — 1, then S,(a,b,c)= P,(a,b,c).
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THEOREM 1.la. For all integers n,a,c >0, S,(a,c) = P,(a,0).

THEOREM 1.1b. For all integers n,c >0, S,(c) = P,(c).

Given a monic polynomial E over GF(g), define 6(E) = 0 if E is not
squarefree, 6(E) = 1 if E = 1, and otherwise let 6(E) denote the sign of the
permutation of the zeros of E effected by the ¢ power automorphism of
EF@. For odd ¢, c(E) = ¢(Ag). If ¢(Ag) is replaced by o(£) in the
definitions (1.2), (1.2a) of S,(a,b,c¢), S,(a,c), then Theorems 1.1 and I.la
remain valid without the stipulation ‘‘g odd’’; the proofs for even g are
virtually the same. This observation is due to Serre; see [1].

The following result is equivalent to Theorem 1.1, as was shown iIn
[10, p. 116].

THEOREM 1.2. For integers n,a,b,c >0, ifnoneof a+jc 0<j<n—-1)
are divisible by q — 1, orifnoneof b+ jc (0<j<n—1) aredivisible by
q—1, orifnoneof a+b+ (n—-1+j)c 0<j<n—1) are divisible by
qg—1, then S,(a,b,c) = P,(a,b,c).

Theorems 1.3 and 1.4 below, analogs of more recent Selberg integral
formulas (see [4]), were stated as conjectures in [5]. They are consequences of
Theorems 1.1a and 1.1b, respectively, as is shown in [5, Theorems 2.2 and 2.5].

THEOREM 1.3. For all integers n,a,b,c > 0,

LT(EO) (1 +e, )P AL)O(AR)

’ (G(—b—na—n(n—1)c)
G(—-D)

(= )@ G(b)

. G(b+na+nn-1)c)

P.a,0), if b#0 (modg-1)

P.,a,c), if b+na+nn-1c
#0 (mod g—1),
where the sum is over all polynomials E of degree n given by (1.3).

THEOREM 1.4. For w e GF(q)* and all integers n,b,c >0 with
b#0 (modg-1),

Y t((w+ 3,27_1/2 —en_2)P AL)d(AE)

E
= r(w)b+ﬂ(q—1)/2+cn(n—1)/z G(_ b—cn(n— 1)/2 —n(g — 1)/2)
G(—D)

Py(c) ,

where the sum is over all polynomials E of degree n given by (1.3).
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§2. L-FUNCTIONS

Throughout this section, V denotes a monic polynomial over GF(g), and
v ranges over the distinct monic irreducible factors of V over GF(q). Write

2.1) V=TJlvev, F=F,=]]v.

|V v|V

If no exponent ord, V in (2.1) is divisible by g — 1, then V' is said to be
primitive. Note that V' = 1 is primitive. For any monic polynomial

(22) W: W(x):xn+wn_lxn—1+wn_2xn—2+ ... +WO

over GF(qg), set

(2.3) a(W)y=w,_1, BWW)=wi_1/2—W,_,.
Define the L-functions
- (2.4) L(t, V) = Y t(R(V, W)) iV,
. w
(2.4a) Li(t,V) = Y w(a(M)T(RV, W))tde?
(2.4b) Ly(t, V) = Y w(BM)T(R(V, W))tdesW
w

where in each sum, W ranges over all monic polynomials over GF(q), and
R(V, W) is the resultant of V and W. It is easily checked that

L) =>0A-gn"', LitD=1,

(2.5)
L(t,) =1+ 6Q)G(g—1)/2)1 .

 Since the summands in (2.4), (2.4a), (2.4b) are multiplicative in W, each of
the L-functions has an Euler product expansion. Thus we have the following
- result.

| LEMMA 2.1. Write V= GH where G and H are monic, relatively
prime polynomials over GF(q) with G primitive and H a (g— 1)th
- power. Then

- (2.6) L, V)= L(tG) I‘—[ (1 — T(R(G,U))tdeg“) ,
‘ viH
- (2.60) L, V) = Lit,6) [] (1 — w(a®)T(R(G,v))1%2)

v|H
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and

(2.6b) L,(t,V) = Ly(t, & [[ 1 = w(B)T(R(G, v))t%2) .

v|H

The next lemma evaluates certain generating functions defined in terms of
the function L (but not L, or L,).

LEMMA 2.2. For all integers a,b > 0,

Z (W) Wb(1))L(t, Wa-1)zdeeW

w

1 +1(=1)4J(a,b)z

, If a#0(@modg-1)
07 = (1—qgt) 1 +1(=1)*J(a, b)zt) or b0 (mod g—1),

(1-2z)2(1 —qz1)
(1-gt) (1—qz) (1-zt)*°

if a=b=0(modg—-1),

L w(@(W) T (W)L, We-1)zée
w
1+ G@)z
(1—gt) 1 +79(b)G(a)zt)

2.7a)

and

1+ q)(2b)G((q— 1)/2)z
(1—gt) (1 +0Q2b)G((g— 1)/2)zt)

where in each sum, W ranges over all monic polynomials over GF(q) and
o, B are as defined in (2.3).

(2.7b) L w(B(W?)L(t, Wi~1)zde? =
w .

Proof. Fix monic V = V(x) and let w range over monic irreducibles over
GF(q). By (2.6),

Y T (R(V, W)L (t, Wa~1)gdeeW

= L(t, 1) EzdegWT(R(V, W)) H (1 _ tdegw)
74

w| W

=L, DY [T =) (2(R(V, w))zdeew)ordn )

W ow|Ww

=L(f,1)H{1+(1—tdegW) y

=1

(T (R(V’ W))Zdegw)m }

= L(t,1) Hl ~ T(R(V, w)) (zt)dee _ L, 1)L(z,V)
U1 — T(R(V, w))zdeew a L@t V) .
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Taking V' = x%(x—1)?, we easily deduce (2.7). The proofs of (2.7a) and
(2.7b) are similar. [

It is shown in [1, Prop. 2.1] that if V'is primitive of degree > 0, then L(z, V)
i1s a polynomial in ¢ of degree (degF — 1) with leading coefficient

(2.8) e(V) = o(F)T(R(V,F))G*(deg V)~ ' [ G*(ord, V)dev |
v|F
where

G*@):=q/G(—a) .
By (2.6), if V' is a (g — 1)th power, then

L(t,V)=(1—qt) ' ] A — rdesv) |

v| VvV

but otherwise L(¢, V) is a polynomial of degree (degF — 1). The following
' lemma shows that for all V, L(¢, V) and L,(¢, V) are polynomials of degrees
degF and degF + 1, respectively. Moreover, for primitive V # 1, the
coefficient g,;(V) of #d¢f in L,(¢, V) and the coefficient g,(V) of ¢!+deef jp
L,(z, V) are given explicitly.

LEMMA 2.3. For each monic polynomial V over GF(qg), L(t,V) and
L,(t,V) are polynomials in t of degrees degF and 1 + degkF,
respectively. If moreover V + 1 is primitive, the leading coefficients of
L(t,V) and L,(t,V) are given by

(2.8a) e1(V) = w(a(F)o(F)t(R(V, — F)) ][] G*(ord, V)deev |
v|F ;
and
(2.8D) (V) =02)G(g-1)/2)y(BE))cF)T(R(V,F")) l|—I G*(ord, V)deev,

respectively, where G*(a) = q/G(— a).

Proof. Fix an integer m > deg F and fix a € GF(qg). Since m > degF, it
is not hard to see that the monic polynomials W over GF(q) of degree m with
o (W) = a run through each residue class modulo F exactly g ~!-deF times.
Since R(V, W) depends only on the residue class of W modulo F, the
- coefficient of 7 in L,(¢, V) thus equals
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Y oy TtR, W)

W monic
deg W =m
— qm—l-—degF Z T(R(V, U)) Z y(a) =0.
U a e GF(q)
deg U < deg FF

Therefore L,(¢, V) is a polynomial of degree < degF". Similar reasoning with
B(W) in place of a(W) shows that L,(Z, V) is a polynomial of degree
< 1 + degF. In view of (2.5), (2.6a) and (2.6D), it remains to prove (2.8a) and
(2.8b) for primitive V # 1.

To prove (2.8a), consider the double sum

Ux) W(x)

(2.9) hy:= ; ;\p (— Res. 0

) W (@M)TRY, V) ,

where W = W(x) ranges over monic polynomials of degree D : = degF over
GF(g) and U = U(x) ranges over nonzero polynomials of degree < D over
GF(q). Write k = degU,

(2.10) Wx) = wpx? + wp_ 1 xP=1 4+ -+- +wy, (Wp=1),
and

xkU(1/x)
(2.11) =gyt ax+ ax+ -

xPF(1/x)

Note that a, # 0 is the leading coefficient of U(x). We have

UW k+1
(2.12) Y (G(W) - ReSmT) =V (WD—I + Z ak+1—iWD—i) .
i=0
For fixed U, the sum over W in (2.9).thus vanishes unless U(x) = — 1. When
U(x) = — 1, each member of (2.12) equals y(a;) = y(a(F)). Therefore
(2.13) wy = gieFr (= 1)deVy(a(F)) .

On the other hand, by the proof of the last formula in [1, §2] (here primitivity
i1s used), we have

(2.14) w =, (Mo(F)T(R(V,F)) ] G(— ord, V)deev

v|F
Comparison of (2.13) and (2.14) yields (2.84q).

To prove (2.8b), consider the double sum
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Ulx) Y(x)

(2.15) hai= ) YW (— Res.. v TRV, V)
U Y

where Y ranges over monic polynomials of degree D + 1 over GF(g) (with
D = deg F) and U ranges over nonzero polynomials of degree < D over GF(q).
Write k = deg U and

(2.16) YX) = ypr1xXP*t + ypxP + - + 30, (pr1=1).

In the notation of (2.11),

UY k+2
(2.17) v (B(Y) - Resoo?) =V ()’f)/z —Vp-1+ Z ak+2—in+]—i) .

i=0
For fixed U, the sum over Y in (2.15) vanishes unless U(x) = 1. When
U(x) = 1, each member of (2.17) equals y(a, + a,y, + y3/2) with
a=—alF), a=aF)*/2+BEF).

Therefore

(2.18) we=qPu(BE) Y v(r*/2) =q?v(BE)QG(g-1)/2).

yeGF(q)
On the other hand, by the proof of the last formula in [1, §2], we have
(2.19) wy = &,(V)a(B)T(R(V,F")) [[ G(— ord, V)deev

v|F

Comparison of (2.18) and (2.19) yields (2.8b).

§3. PROOF OF THEOREMS 1.1, 1.1a, 1.1b

Let d denote the order of t¢. The following lemma gives useful formulas
for P,(a,b,c), Pu(a,c), and P,(c) in the case d|n. The proof of (3.10) is
elementary but for (3.1) and (3.1a) we require the Hasse-Davenport product
formula [7, (7)].

LEMMA 3.1. Let d be the smallest positive integer such that
cd=0 (modg—1). If d|n, then
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( (= J(ad, bd))@t(—1)° () gn-n'd

6o ,if ad # 0 (modg—1)
C hn
or bd # 0 (mod g — 1)
(31) Pn(a9bsc) = < qn—Zn/dT(_ l)c(;)
: if ad=bd=0
\ G(c) (modg—1),

_ rad n/dg(— 1 c(2) gn-n/d
(3.1a) P,(a,c) = (— (@ Glad) (= 1) *'a ,
G(O)"

and

(- dQ2d)G((g — 1)/2))"91(~ 1) () gn-nrd

1 P, =
(3.1b) © o

Proof. By the Hasse-Davenport product formula [7, (7)],

d-1 L

d_
(3.2) [1 G@a+jo) = — 1°(d)G(ad) IT GGo -

Jj=0 j=0
It follows from (1.4) and (3.2) that
_ G(ad)G(bd)Glad + bd)g?—21(— 1)°®)

(33) Pd(aab’c) = G(C)d
Thus
e ® if ad=bd=0
G(0) A |
B (mod g —1)
(34) Pd(as b,C) - * —J(Cld, bd)T(— I)C(g)qd—l
, otherwise .
\ G(o)¢

As d|n, we have P,(a,b,c) = Py(a,b,c)"?. Since

T(— 1)entd=1/2 = (- 1)"(3) "

(3.1) follows. The proof of (3.1a) is similar. If in place of (3.2) one uses the
formula

a1 G(jo)
(3.5) o) = 5
jgl d»2)G((g—1)/2)

which is a consequence of quadratic reciprocity, then (3.1b) readily
follows. [
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For positive integers n, a, b, ¢, define the double sums

- (3.6) Yw=§2dg@wme@eML
P

- (3.6a) nw=§2wm@Md@mm@%P»,

and A

(3.6b) Y,:= % Y w(B(Q)T(R(Q, P)),

where here and in the sequel, P and Q range over monic polynomials over
GF(q) with

(3.7) degP=n-1, degQ=n.
In the next lemma, we evaluate Y, Y, and Y, in terms of the Selberg sums

S.(a,b,0), S,(a,c), and S,(c), respectively.

; LEMMA 3.2. Assume that c¢ = 0 (modqg—1) and that for all | with
L 0<j<n—-1, b+ jc#0(modg—1). Then

(= D" C) s, (a,b,0)G(©)"/ G(cn) | if d ¥ n
G8 Y=oy 9 (s b0+ @ DP@ b0} if d | n,
| qG(cn)
(= 1)°) S.(a,c)G(c)"/G(cn) , if d ¥ n
G8a) V=0 ® Y s ot @- D@}, ifd|n,
qG(cn)
| and
(- D°C) S, G(e)"/ G(en) | if d¥n
G =y O L s v @- P}, i dn.
qG(cn) :

Proof. Note that d > 1 by hypothesis. Write
(3.9) Y=A+B,

where A is the sum over those QO which are not d* powers, and B is the sum
over those Q of the form Q = W? (for monic W with degW = n/d).
 Observe that Q is a d* power if and only if V' = Q¢is a (g — 1) power. For
' those Q for which V is not a (g — 1) power, there can be a contribution
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to A only if Q is squarefree, since\L (¢, V) is a polynomial of degree (deg F — 1).
Thus

A=Y (QUOQ1)e(Q) -

QO squarefree

By (2.8), it follows that

(3.10) A =1(-1)"* <GS, (a,b,c)G*(0)"/ G*(cn) .

If d ¥ n, then Q cannot be a d™ power, so Y = A. Moreover, if d*n, then
en# 0 (modg—1), so G*(c)"/G*(cn) = G(c)"/G(cn). This proves (3.8)
in the case d [ n.

Suppose now that d | n. Then

B = Y u(we©w (1) L t(R(W, P))
P

W

where W ranges over monic polynomials over GF(q) of degree n/d. Thus B
" is the coefficient of 7~ 1z"/9 in

Y 1 (U=(0) U(1)) L(t, U~ 1)zl ,
U

where U ranges over all monic polynomials over GF(q). If bd = 0 (mod g — 1),
then » + ¢j = 0 (mod g — 1) for some j,0 < j < d — 1, which contradicts the
hypothesis. Thus bd # 0 (mod g — 1), so by (2.7),

B = (— J(ad, bd)) iz (— D)gr-""4-1(1 - q) .

Since G(cn) = — 1, it follows from (3.1) that
an +c(” G(c)"
(3.11) B=o(-1"® S99 pbo@-1).
qG(chn)

By (3.9)-(3.11), the proof of (3.8) is completed. The proofs of (3.8a) and (3.80)
follow similarly. [

By reversing the order of summation in the double sums Y, Y;, and Y,,
we can express them in terms of S,_j;(a+c,b+c,c), S,_1(a+c,c), and
S,_1(c), respectively, as the following lemma shows.

LEMMA 3.3. Assume that ¢ # 0 (modq— 1) and that for all j with
0<j<n—-1, b+jc#0(modg—1). Then
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Y =1(- )"0 S, @+e,b+e,0G@GB)GE"!

G:12) -Gla+b+(n-1)c)/q,

(3.12a) Y, =1(- )G s, _(a+c,0G@G0@ !,

and

(3.12b) Y, = t(- D) S, ()G9 (2)G((g - 1)/2) .
Proof. We have

(3.13) Y = ; %T(R(V, 0)) ,

where

V =x%x—1)2Pc .

- By hypothesis, V is not a (¢ — 1) power, so L(¢, V) is a polynomial of
degree (degF —1). Thus we may restrict P to be squarefree and prime to
x(x—1) (so degF=n+ 1), as no other P contribute to Y.

Suppose that ¢ # 0 (mod g —1). Then V is primitive and (3.13) yields

Y =) e(V),

P

so (3.12) follows by (2.8). ,
Now suppose that ¢ = 0 (mod g — 1). Then by (3.13) and (2.6),

Y= - Je(x=1)PP)t(R((x - )PP, X)) ,
P

and again (3.12) follows by (2.8).
To prove (3.12a) and (3.12b), one proceeds similarly, using

(3.13a) Y=Y YL w(a(@)t(Rx“P, Q)
P Q
and
(3.13b) Y=Y Yv(B@)t(REP,0)
P Q

in place of (3.13).

PROOF OF THEOREMS 1.1, 1.1a, 1.15b.

-

To prove Theorem 1.1, it suffices to prove that S,(a,b,c) = P,(a,b,c)
under the assumption
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b+ jc#0(@modg—1) forall j with 0<j<n—-1,
in view of [10, Lemmas 2.1 and 2.2]. Assume also that
c# 0 (modg-1),

since the result has been proved in [5] for ¢ = 0 (mod g — 1).
Theorem 1.1 is clear for n =1, so let » > 1 and assume as induction
hypothesis that

S,_ia@a+c,b+c,c)=P,_(a+c,b+c,0).
By (3.8) and (3.12), if d } n,
G(@)G(b)G(cn)G(a+ b+ (n— 1)c)

S,(a,b,c) =P,_(a+c,b+c,0)
‘ 4G ()

= Pn(aabyc) ’

whereas
S,(a,b,c) + (g— 1)P,(a,b,c) = qgP,(a,b,c), if dl|n.

Thus S,(a, b,c) = P,(a, b, c) in both cases, proving Theorem 1.1. The proofs
of Theorems 1.1a and 1.1b follow similarly, from (3.8a), (3.12a) and (3.8b),
(3.12b) in place of (3.8), (3.12).
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