
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 37 (1991)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THE EVALUATION OF SELBERG CHARACTER SUMS

Autor: Evans, Ronald J.

DOI: https://doi.org/10.5169/seals-58741

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 21.05.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-58741
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


L'Enseignement Mathématique,t. 37 (1p.

THE EVALUATION OF SELBERG CHARACTER SUMS

by Ronald J. Evans

Abstract. The evaluations of Selberg character sums conjectured on

p. 207 of Enseignement Math. 27 (1981) are proved.

§ 1. Introduction

Many of the classical special functions over C have character sum analogs

over finite fields. For example, the Gauss and Jacobi sums defined in (1.1)

are analogs of the gamma and beta integrals

f°° dx f1 dx
r(a)=l e~*xa — ß(fl,ö) \ xa(l-x)b— -.

Jo * Jo x(l-x)
Some identities for character sums over finite fields seem more difficult to

prove than their classical counterparts; compare, e.g., the Hasse-Davenport

product formula for Gauss sums [7, (7)] with the Gauss multiplication formula
for gamma functions. The identities for «-dimensional Selberg character sums

given in Theorems 1.1, 1.1a provide further examples. Their counterparts are

the well known «-dimensional Selberg integral extensions of the gamma and

beta integral formulas.
The case « 3 of the Selberg character sum identity in Theorem 1.1 has

been used to evaluate a sum connected with the root system G2 [8]. The case

« 2 is equivalent to an analog of Dixon's summation formula [11, (2.1.5)]
involving hypergeometric 3F2 character sums over finite fields. We remark
that hypergeometric character sums have been used, e.g., in the computation
of the number of points on hypersurfaces [13], [12], in proving congruences
for Apery numbers [14], and in graph theory [6], [9].

Let GF(q) be a finite field of q elements, where g is a power of an odd
prime. Fix a multiplicative character t: GF{qY -> C* of order q - 1 and a

nontrivial additive character \j/ : GF(q) -> C*. Extend t by defining t(0) 0.

Let $ t(f/ ",)/2 be the quadratic character on GF(q). For all integers a, b,
define the Gauss sums G(a) and Jacobi sums J(a,b) by
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(1.1) G(a)= £ t fê)*u/fê), /(*,&) £ t(^t(1-^.
£,6 GF(q)* \^^eGF{q)*

For integers n ^ 0 and a, b,c > 0, define the Selberg character sums

(1.2) Sn(a,b,c)Et((- 1)«"£(0)«£(1)»A£)<|>(Ab)
E

(1.2«) Sn(fl,c) Ev(e(I_1)T(£(0)«Ay<|>(AB)
E

(1.2 b) S„(c)=ï^-,/2-e,*)WE

where each sum is over all monic polynomials

(1.3) E - is(x) jc" + jA"-1 + en^2xn~2 + • • • + e0

of degree n over GF(q), and where AE denotes the discriminant of E (with
the convention that 1 when deg(£) ^ 1). Define the following
products:

"A G (a + je) G (b + je) G (c +jc)G(a +j)c)
(1.4) P„(a,b,c)11

i o qG(c)

D
Vr1

(1.4«) P„(a,c) H — >

y o G(c)

W G(c + yc)4)(2)G((ç - l)/2)
(1.46) p„(c) n ——

j-o G(c)

where G denotes the complex conjugate of G.

The object of this paper is to prove Theorems 1.1, 1.1a, and 1.1b below.
These results, analogs of n-dimensional integral formulas of Selberg [3, (1.1),

(L3), (1.2)], [2], verify conjectures made in 1981 [7, (29), (29a), (29b)]. The

decisive breakthrough came in 1990 when Anderson [1] proved a somewhat

weakened form of Theorem 1.1. The proofs here are based on modifications

of the method in [1]. The modifications are designed to handle complications
arising from "imprimitive" L-functions (see §2).

Theorem 1.1. For all integers n, a,b,c > 0, if none of

a F b + (n - 1 + j)c (0 ^n- 1)

are divisible by q - 1, then Sn(a,b,c) Pn(a,b,c).
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Theorem 1.1a. For all integers n,a,c > 0, S„(a,c) Pn(a,c).

Theorem 1.1b. For all integers n, c > 0, Sn(c) Pn(c).

Given a monic polynomial E over GF(q), define o(E) 0 if E is not

squarefree, o(E) 1 if E 1, and otherwise let o(E) denote the sign of the

permutation of the zeros of E effected by the qth power automorphism of

GF(q). For odd q, o(E) (f>(A^). If (KA^) is replaced by o(E) in the

definitions (1.2), (1.2a) of Sn(a,b,c), S„(a,c), then Theorems 1.1 and 1.1a

remain valid without the stipulation "q odd"; the proofs for even q are

virtually the same. This observation is due to Serre; see [1].
The following result is equivalent to Theorem 1.1, as was shown in

[10, p. 116].

Theorem 1.2. For integers n, a,b,c> 0, if none of a + jc (0 ^n- 1)

are divisible by q - 1, or if none of b + jc (0^y^/2-l) are divisible by

q - 1, or if none of a + b + (n - 1+ j)c (0 ^n- 1) are divisible by

q - 1, then Sn(a,b,c) Pn(a,b,c).

Theorems 1.3 and 1.4 below, analogs of more recent Selberg integral
formulas (see [4]), were stated as conjectures in [5]. They are consequences of
Theorems 1.1a and 1.1b, respectively, as is shown in [5, Theorems 2.2 and 2.5].

Theorem 1.3. For all integers n, a,b,c > 0,

Ei(£(0)"(l+e„_1)6A9<t,(A£)
E

f G( - b - na - n(n - l)c)
G(-b)

t — 1 y«G(b)

Pn(a, c) if b ^ 0 (mod q - 1)

Pn{a, c) if b + na + n(n - 1) c
y

G(b y nay n(n - l)c)* #0 (mod q - 1)

where the sum is over all polynomials E of degree n given by (1.3).

Theorem 1.4. For w e GF(q)* and all integers n,b,c>0 with
b # 0 (mod q - 1),

X t((w + e2n_i/2 - en.2)b A^)4>(A£)

~ T(l vy+n(q-\)/2 + cn(n-\)/2^~ C"(W ~ W2 ~ Hp? - l)/2)
G(-b)

where the sum is over all polynomials E of degree n given by (1.3).
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§2. L-functions

Throughout this section, V denotes a monic polynomial over GF(q), and

v ranges over the distinct monic irreducible factors of V over GF(q). Write

(2.1) K= F Fv J[u.
u\V v\V

If no exponent ordvV in (2.1) is divisible by q — 1, then V is said to be

primitive. Note that V 1 is primitive. For any monic polynomial

(2.2) W W(x) xn + wn-ixn~l + wn-2xn~2 + ' ' * + Wo

over GF(q), set

(2.3) ft(W ß(W) w2„_t/2 - w„-2

Define the L-functions

(2.4) L(t, V)X i(R(V,

(2.4a) L,(t, V) I v(a(W0)t W))tdegW,
W

(2.4 b) L2(t, V)Y. vtöWMW W))t**w
w

where in each sum, W ranges over all monic polynomials over GF(q), and

R(Vy W) is the resultant of V and W. It is easily checked that

L{t,\){\-qt)-1,L,(U)=*1,
L2(t,l)=1 + U2)G(

Since the summands in (2.4), (2.4a), (2.4b) are multiplicative in W, each of
the L-functions has an Euler product expansion. Thus we have the following
result.

Lemma 2.1. WriteVGH where G and H are monic, relatively

prime polynomials over GF(q) with G primitive and H a

power. Then

(2.6) L(t,V) L(t,G)Il(1
u\H

(2.6a) Li(t, V)L\{t,G)Ü0 ~ \\i(a(v))i(R(G,u))t,
v\H
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and

(2.6b) Lft,V) L2(t, G) I] (1 - \|/(ß(i»)T(*<G, v))t*w)
v\H

The next lemma evaluates certain generating functions defined in terms of
the function L (but not Lx or L2).

Lemma 2.2. For all integers a, b > 0,

£t(H^(0) Wb(\))L(tgff
w

1 + x(~lYJ(a,b)z

(2.7)
(1 - qt)(1 + t( - l)"J(a, '

(1 — ^)2(1 — QZt)

(1 —qt)(1 -qz)(1
'

if a ^ 0 (mod q- 1)

or b # 0 (mod q — 1)

if a b 0 (mod q- 1)

(2.7a)

and

w
1 + T °(b)G(q)z

(1 +*«(&) G(a)tf) '

^ 1 + 4>(2Z>)G((g--
(2.7b) £ v(ß(W*))L(/, x >

7? (l-0O(l+<K2ô)G((g-l)/2)zO
where in each sum, W ranges over all monic polynomials over GF{q) and

a, ß are as defined in (2.3).

Proof. Fix monic V V(x)andlet w range over monic irreducibles over
GF(q). By (2.6),

X x(i?(F, W))L(t, W"-l)zd^w
w

L(t,l)Xzdegprx(i?(F, W)) n (1 -tdegw)
W w| W

L(t,\)£n {(1 -?degW) (t(i?(F, W))zde8»')ord,.»'}
W w\W

L(t,1) n I 1 + (1 - ^degw) Ü (t(/?(F, w))zdes"')ml

L(t, l) n
1 - i(R(V, w)) (zt)d^w L(t, 1 V)

1 - x(R( V, w))zd^v L(zt, V)
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Taking V xa(x - l)b, we easily deduce (2.7). The proofs of (2.1a) and
(2.1b) are similar.

It is shown in [1, Prop. 2.1] that if Fis primitive of degree > 0, thenL(I, F)
is a polynomial in t of degree (deg/7- 1) with leading coefficient

(2.8) 8(F) o(F)t(R(F,F'))G*(deg F) ~1 G*(ord„F)de^
u\F

where

G*(a) : q/G(- a)

By (2.6), if Fis a (q - l)th power, then

L(t,V)(l-^)-'II(l-?des")
u\V

but otherwise L(t, V) is a polynomial of degree (deg/7- 1). The following
lemma shows that for all F, Li(t, V) and L2(t, V) are polynomials of degrees

deg/7 and deg F + 1, respectively. Moreover, for primitive F=é 1, the

coefficient Sj(F) of tdegF in Lx(t, V) and the coefficient s2(F) of /1 + degF in
L2(t, V) are given explicitly.

Lemma 2.3. For each monicpolynomial V over GF(q), Lx(t,V) and

L2(t, F) are polynomials in t of degrees deg F and 1 + deg/7,

respectively. If moreover V F 1 is primitive, the leading coefficients of
Lx(t, F) and L2(t, F) are given by

(2.8 a) e,(F) \|/(a(F))a(F)f - ^')) II G*(ord„ F)de«"

and

(2.8 b)e2(K) (K2)G((<7- l)/2)v|/(ß(F))c(F)T(i?(K,F')) Y[ G*(ord„ K)deg",

respectively, where G*(a) q/G(-a).

Proof. Fix an integer m > deg F and fix a e GF(q). Since m > deg/7, it
is not hard to see that the monic polynomials W over GF(q) of degree m with
a (IF) a run through each residue class modulo F exactly qm~l~de%F times.
Since R(V, W) depends only on the residue class of IF modulo F, the

coefficient of tm in Lx(t, V) thus equals
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£ y(a.{ W))T(R(V, W))
W monic

deg W — m

(?m-i-deg F £ x(i?(F,LO) I y(a) 0.
u a e GF(g)

deg U < deg F

Therefore L{(t,V)is a polynomial of degree < deg Similar reasoning with

ß(fF) in place of a (W)showsthat V) is a polynomial of degree

< 1 + degF. In view of (2.5), (2.6a) and (2.6 it remains to prove (2.8a) and

(2.8 b) for primitive V

To prove (2.8a), consider the double sum

(2.9) n.:=£ v(a(»0)*(*(K,
U W \ F(x) J

where W W(x)ranges over monic polynomials of degree D : deg F over

GF(q) and U U(x) ranges over nonzero polynomials of degree < D over

GF(q). Write k deg U,

(2.10) W(x) wdxd+ wD-.iXD~l+ • • • + w0, (wD=l),

and

xkU(l/x)
(2.11) a0 + a+ a2x2

Notethat a0 0 is the leading coefficient of U(x). We have

I UW\ I \
(2.12) v I a(W)-Res^-^1 I wD.x +L a^+1_, I

For fixed U, the sum over W in (2.9) thus vanishes unless U(x) — 1. When

U(x) -1, each member of (2.12) equals vp(ai) \|/(a(F)). Therefore

(2.13) Pi q^Ft(-l)degKt|/(a(F))

On the other hand, by the proof of the last formula in [1, §2] (here primitivity
is used), we have

(2.14) n, e,(F)o(F)t(/?(F,F')) I] G(—ord„ F)deg"
v\F

Comparison of (2.13) and (2.14) yields (2.8a).

To prove (2.8Z?), consider the double sum
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(2.15) n2:= S £ y - Resco —7W) \|f(ß(y))f(*(K, U))
u Y \ F(x)

where Y ranges over monic polynomials of degree D + 1 over GF(q) (with
D degF) and U ranges over nonzero polynomials of degree < D over GF(q).
Write k deg U and

(2.16) Y(x) yD + i*D+l + yDxD + + To, (yD+1 1)

In the notation of (2.11),

(2.17) Vi/ |ß(r) - Res^-^j \J/ \y2D/2-yD-\ + E ak + 2-iyD+ i-/j •

For fixed U, the sum over Y in (2.15) vanishes unless U(x) 1. When
U(x) 1, each member of (2.17) equals \\f(a2 + axyD + y2D/2) with

a, - a(F) a2 a(F)2/2 + ß(F)

Therefore

(2.18) n2 ?Dv(ß(F)) S \v(y2/=güV(ß(F))0(2)G(te- l)/2)
yeGF(q)

On the other hand, by the proof of the last formula in [1, §2], we have

(2.19) [i2 s2(V)c(F)t(R(V,F')) I] G(-ord„K)d^
u\F

Comparison of (2.18) and (2.19) yields (2.8b).

§3. Proof of Theorems 1.1, 1.1a, 1.16

Let d denote the order of %c. The following lemma gives useful formulas

for Pn(a,b,c), Pn(a,c), and Pn(c) in the case d\n. The proof of (3.1Z?) is

elementary but for (3.1) and (3.la) we require the Hasse-Davenport product
formula [7, (7)].

Lemma 3.1. Let d be the smallest positive integer such that
cd 0 (mod q - 1). If d\n, then
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(3.1) P„(a,c)

{-J{ad,bd))n/dx(-l)c(;)g"-"/rf
G to)"

^n-2n/</x(_ l)c(")

if ad#0 (mod 1)

orM# 0 (mod 1)

if ad bd0

(mod g - 1)

T* n{a,c)

G(c)"

(-tarf(<i)GM))"/rfx(- l)c^-*g"~"/rf

G(c)"(3.1 a)

and

(3.16)
C(c).

Proof. By the Hasse-Davenport product formula [7, (7)],

(-4)(2J)G((g- l)/2))"/rfT(- l)cC)g"-"/o1

(3.2) n Gto+yc) - xa"(d)G(ad) [] G(/'c)
j=0 J=0

It follows from (1.4) and (3.2) that

(3.3)

Thus

-G{ad)G(bd)G{ad+bdt(-1)'

pAa,b,c) —
(2)

(3.4) Pd(a,b,c)

qd~2x(- l)c(2)

G(c)°

-J(ad,bd)x(- 1

if ad bd 0

(mod <7~1)

G{cY
otherwise

As d\n, we have Pn(a,b,c) Pd(a,b,c)n/d. Since

X(_ i)<»<</-0/2 T(- i)c(2)

(3.1) follows. The proof of (3.1<7) is similar. If in place of (3.2) one uses the

formula

(3.5)
G(jc)

$(d) TT -Ai <D(2)G(to-l)/2)

which is a consequence of quadratic reciprocity, then (3.1Z?) readily
follows.



244 R. J. EVANS

For positive integers n, a, b, c, define the double sums

(3.6) Y:~Z Z<Q(VYQ(,
Q P

(3.6a) F, : £ I v(a(ß))T(e(0)'*(ß<,/>))
Q ^

and

(3-66) r2: £ J>(ß(ß))T(Ä(ßSf>))
Q P

where here and in the sequel, P and Q range over monic polynomials over
GF{q) with

(3.7) degP n - 1 degQ n

In the next lemma, we evaluate Y, Yi, and 72 in terms of the Selberg sums

Sn(a, b, c), Sn(a, c), and £„(<:), respectively.

Lemma 3.2. Assume that c^0(mod<y-l) and that for all j with
b + je ^ 0 (mod q - 1). Then

(3.8) Y
t( — l)"" + c(^S„(a,à,c)G(c)"/G(cn)

("\ G(c)n
t(- l)a" + c(2) — {Sn(a,b,c)+

qG(cn)

|t(- l)cV) sn{a,c)G{c)n/G(cn) if d X n

(3.8a) Y, < c("\ G(c)n
I t( 1) w {S„(a,c) + (q - l)Pn(a,c)}

qG(cn)

and

x(- 1 )c("2hn(c)G(c)"/G(cn), if dX n

Yl V- 1)C(D {S„(c) + (q- l)P„(c)} I

qG{cn)

Proof. Note that d > 1 by hypothesis. Write

(3.9) Y A+B,
where A is the sum over those Q which are not dth powers, and B is the sum

over those Q of the form Q Wd (for monic W with deg W n/d).
Observe that Q is a dth power if and only if V — Qc is a (q - l)ih power. For
those Q for which V is not a (q — \)th power, there can be a contribution
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to A only if Q is squarefree, since L(t, V) is a polynomial of degree (degF 1).

Thus

AI x(Ôa(0)ô"(l))e(Ôc) •

Q squarefree

By (2.8), it follows that

(3.10) A t( 1 )an
+ cWS„(a,b,c)G*.

If d n,then Q cannot be a d'hpower, so Y A. Moreover, if then

cn^O (mod q -1), so G*(c)"/G*(cn) G(c)"/G(cn). This proves (3.8)

in the case d \ n.

Suppose now that d\n. Then

B= Y.<wad{<d)wbd{\))Y,<R{wcd,p))
w p

where W ranges over monic polynomials over GF(q) of degree n/d. Thus B

is the coefficient of tn~xzn/d in

Y,^(Uad{0)Ubd(\))L{t, W~x)zdQgU
u

where U ranges over all monic polynomials over GF(q). If bd 0 (mod q - 1),

then b + cj 0 (mod q- 1) for some j, 0 ^ j ^ d - 1, which contradicts the

hypothesis. Thus bd # 0 (mod#- 1), so by (2.7),

B {-J(ad,bd)y/dx(-\)anqn-n/d-x{l-q)

Since G(cn) - 1, it follows from (3.1) that

(3.11) B t( — l)a" + c(2) —P„(a,è,c) 1)
qG(cri)

By (3.9)-(3.11), the proof of (3.8) is completed. The proofs of (3.8a) and (3.8Ö)

follow similarly.

By reversing the order of summation in the double sums Y, Yl3 and Y2}

we can express them in terms of Sn^t(a + c,b + c,c), Sn-\{a + c,c), and
iS/?_i(c), respectively, as the following lemma shows.

Lemma 3.3. Assume that c # 0 (mod q - 1) and that for all j with
0 ^ j ^ n - 1, b + je ^ 0 (mod q - 1). Then
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(3.12)
Y t( — l)an + cW Sn„t{a + c,b + c,c)G

- G(a + b + (n- 1 )c)/q

(3.12a) Y, t(-1 )c(^S„-,(a +c,c)G,
and

(3.12 b) Y2 t(-1)c^)s„_1(c)G(c)"-'4)(2)G((ç-1)/2)

Proof. We have

(3.13) y- I It(R(KQ))
p Q

where

K= xa(x- 1 )bPc

By hypothesis, V is not a (q - \)th power, so L(t, V) is a polynomial of
degree (deg/7- 1). Thus we may restrict P to be squarefree and prime to
x(x— 1) (so degF= n + 1), as no other P contribute to Y.

Suppose that a # 0 (mod# — 1). Then V is primitive and (3.13) yields

Y=£s{V)
P

so (3.12) follows by (2.8).
Now suppose that a 0 (mod# - 1). Then by (3.13) and (2.6),

Y= - £s((x-l)ftP<OT(i?((x-l)".Pc,x))
p

and again (3.12) follows by (2.8).
To prove (3.12a) and (3.126), one proceeds similarly, using

(3.13a) F, £ 2>(a(ß))T(j
P Q

and

(3.136) Y2 I EV|/(P(Q))t(Â(Pc,Ô))
p Q

in place of (3.13).

Proof of Theorems 1.1, 1.1a, 1.16.

To prove Theorem 1.1, it suffices to prove that Sn(a,bfc) P„(a,b,c)
under the assumption
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b +jc& 0 (mod q- 1) for all j with 0 < j ^ n - 1

in view of [10, Lemmas 2.1 and 2.2]. Assume also that

c # 0 (mod# - 1)

since the result has been proved in [5] for c 0 (mod# - 1).

Theorem 1.1 is clear for n — 1, so let n > 1 and assume as induction

hypothesis that

Sn _ (a + c, b + c, c) Pn _ i (a + c, b + c, c)

By (3.8) and (3.12), if d )f n,

G(a
S„{a,b,c)P„_,(a+ c,b + c,c)——

qG(c)

P„(a,b,c)
whereas

Sn(a,b,c) + (#- 1)7^(0, Z?,c) qPn(a,b,c) if d | n

Thus Sn(a,b,c) Pn(a,b,c) in both cases, proving Theorem 1.1. The proofs
of Theorems \Aa and 1.1Z? follow similarly, from (3.8a), (3.12a) and (3.8b),
(3.126) in place of (3.8), (3.12).
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