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Le coefficient de x de second membre est 4 = 18udvdwé(w!¥ —v'¥)Q(v, w)
ou QO est le polyndme

Q(X,)") = x>* + y54 — x54y54 4 x36 4+ y36 + x18»18 4 x36y18 + x18y36 .

La longueur de I’identité est 24 ce qui la rend pratiquement inutile.

5. RETOUR SUR LE PROBLEME DE TARRY-ESCOTT

En degré k suffisamment petit, beaucoup d’identités et donc de majo-
ration de v4(k) proviennent de s-uples (aj,...,as) et (by,...,bs) dont les
k — 2 premieres fonctions symétriques élémentaires coincident. On écrira
alors suivant une notation classique dans cette question [a@;,...,d]x-2
= [by,bs,...,bs]k—>. La recherche systématique de tels s-uples se fait en
général inductivement, a ’aide des deux opérations suivantes ([4], [6]).

LEMME. Si [a,,...,alx = [b1,....D ]k, alors quel que soit x

1) [ala'--aal'9b1+x;b2+x:---:br+x]k+l
= [01+X,02+X,...,a,-+x,b1,b2,...,br]k+1 .
2) lay,...,a, a1 +x,...,a,+ Xl = [b1,...., 0., b1+ X, ..., 0, +X]« .

Naturellement la longueur des s-uples déduit par le procédé récurrent est
le double des s-uples de départ mais un choix judicieux peut permettre de
réduire cette longueur: en effet chaque fois que 'on a a; + x = a; (resp.
b, + x = b,) on pourra supprimer dans 1’égalité des deux crochets, les termes
égaux, aussi pour appliquer la regle en question on calcule {a;—a;/i>j} et
{b;j—b;/i>j} et on choisit pour x I’'un des entiers qui est le plus souvent une
différence de deux a; et de deux b;. Ainsi partant de [0,3], = [1,2], en
ajoutant 3 puis 5 puis 7, on trouve [0,4,5],=[1,2,6],, [0,4,7,11],
= [1,2,9,10]; et [0,4,8,16,17], = [1,2,10,14,18]4 ce qui montre que
pk) =k +1 pour k<4 et que vg(k) =2(k—1) pour kK < 6. On peut
développer cette technique et s’essayer a trouver de nombreux exemples de
s-uples vérifiant [a,...,a], = [b1,...,bs], mais il n’est pas évident de
minimaliser s par rapport a A.

On peut aussi opérer littéralement en partant de [a, b]; = [c,a + b — ], en
prenant x dans le Z-module libre de base (a, b, ¢). On prend x = b — a d’ou
[a,b+c—a,2b—cl, = [c,a+b—c, 2b—al,; ensuite on peut prendre
y=a—2b+ c d’ou



234

P. REVOY

[b+c—a,2b—c,a—2b+ 2c,2a — b]s
=R2b—a,a+b—-c,2a—-2b+c, — b+ 2c]s

ce qui fournit une famille d’identités

4
Y (x+a)®— (x+b)°=Ax+ B

i=1

ou A est un polyndme homogéne de degré 4. L’identité (3) en est un cas
particulier provenant de [0, 3,4,7]; = [1,1,6,6]; qu’on peut obtenir a partir
de [0,4,5], = [1,2,6], en ajoutant 1 (au lieu de 7). L’existence de plusieurs
choix possibles pour x rajoute a la difficulté d’une étude systématique qui pour
I’instant n’a fourni ainsi que des exemples. On trouvera dans [9] des références
bibliographiques ainsi que des majorations explicites pour p(k) et M (k) définis
dans la partie précédente.

(3]
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