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DESCARTES’ THEOREM IN n DIMENSIONS

by Branko GRUNBAUM ') and G.C. SHEPHARD

The elementary and beautiful theorem known as Descartes’ Theorem was
discovered in the seventeenth century and is stated in Descartes’ De Solidorum
Elementis. The manuscript was lost, however, and we only know of its contents
because a copy made by Leibnitz was discovered in the Royal Library
of Hanover in 1860. A transcription and translation of this manuscript,
together with comments, can be found in Federico’s fascinating account of the
work [2].

Descartes proved his theorem for convex polyhedra by observing that the
sum of the ““exterior’’ angles is equal to ‘‘eight solid right angles’’. Simpler
proofs, depending essentially upon Euler’s theorem for polyhedra are now
known, and Descartes’ Theorem has been extended to (possibly non-convex)
elementary polyhedra, see [5]. It has also been dualised, see [4].

In [5, p. 343], Hilton and Pedersen say ‘‘...there will be no straightforward
generalization to higher dimensions of Descartes’ formula for the total angular
defect of a polyhedron... since this defect ceases in higher dimensions to be
a topological invariant’’. If only ‘‘defects’’ (or deficiencies as we prefer to call
them) at the vertices are considered, such a statement is undoubtedly true; but
there is a straightforward generalisation if deficiencies at faces of other dimen-
sions are taken into account. This was stated in [8] for convex polytopes. Here
we generalise Descartes’ Theorem to elementary polyhedra (defined below) of
arbitrary dimension and Euler characteristic, besides giving a new and much
simpler proof.

Before stating this result we must be clear about the kind of polyhedra or
polytopes to which it applies. An (n — 1)-dimensional convex polytope is any
bounded set of E”-! which has non-empty (n — 1)-dimensional interior and
can be expressed as the intersection of a finite number of closed halfspaces.
A family {F,,F,,...,F,} of (n— 1)-dimensional convex polytopes situated in
E" is said to form an elementary polytope P (of n dimensions) if
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(1) for each i and j, the intersection F; N F; is either empty or is a face of

~each of F; and F;; and

(i1) the union of all the F; is an (n — 1)-dimensional manifold.

The sets F; are called the (n — 1)-faces (or facets) of P, and the other faces

%of P are the faces of the F;. Two features of elementary polytopes must be

s
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L

1
Thus a right-angle is Z , and the (solid) angle at a vertex of a cube is g .

stressed: faces have no mutual intersections other than at their boundaries, and
the manifold may have arbitrarily high Euler characteristic. Elementary
- polytopes have been considered in the literature under a variety of other
‘names; for example, in the 2-dimensional case they are called ¢‘polyhedral
“maps’
~are (n — 1)-dimensional manifolds.

)

in [1], while in the terminology of [3] they are cell-complexes which

Throughout we shall use absolute angle measure. Here an angle, in any

Tinumber of dimensions, is measured as a fraction of the ‘‘total’’ angle at a
point, that is, the angle subtended at a point by a sphere centred at that point.

1

~ With this method of measuring angles, many formulae are greatly simplified.
In particular, let P be a convex three-dimensional polytope (polyhedron) and
~s(V;) be the sum of the (plane) angles at a vertex V; of P of all the 2-faces
- of P incident with V;. Then 8(V;) = 1 — s(V;) is called the (angle) deficiency
of P at V:, and the classical form of Descartes’ Theorem states

Y8V =2.

For elementary polyhedra P of higher genus, the same equality holds with
the right side replaced by y(P), the Euler characteristic of P (see, for
example, [5], [6]).

We now state and prove the analogous theorem in four dimensions. At each
vertex V; of a four-dimensional elementary polytope P, if we denote by s(V;)
the sum of the (solid) angles at V; of all the 3-faces of P incident with V;,
then

o(V) =1 —s(Vi)

is called the (angle) deficiency of P at vertex V;. In a similar way, if we
denote by s(E;) the sum of the (dihedral) angles at an edge E; of all the
3-faces of P incident with E;, then

S(E) =1 — s(E))
is called the deficiency of P at the edge E;.
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DESCARTES’ THEOREM IN FOUR DIMENSIONS. Let P be an elementary
polytope in E*. Then

(1) Y. 85(V) — X,8(E) = x(P)

where the first summation is over all the vertices V; of P, the second
summation is over all the edges E; of P, and x(P) s the Euler
characteristic of P.

To illustrate this theorem, consider the boundary B of the 4-dimensional
(hyper)cube. This is a 3-manifold with %(B) = 0; it consists of 8 cubes of
dimension 3, meeting by fours at each of the 16 vertices V; of B, and by
threes at each of the 32 edges E; of B. By the above,

1 1 1 1
S(V)=1—-4x-=- and S8(E)=1-3X-=-,
(Vi) s 2 (E) e
and (1) becomes
16><1 32><1—0— (P)
2 4 A

Proof of the theorem. We make use of the three-dimensional form of
Gram’s Theorem (see [3], Section 14.1). Denoting by sy(F)) the sum of the
solid angles at the vertices of the 3-face Fy, by s,(F;) the sum of the dihedral
angles at the edges of F;, and by s,(F;) the sum of the ‘“solid’’ angles at the

1
2-faces of Fj (which is equal, by convention, to 5 f2(Fy), where f,(Fy) is
the number of 2-faces of F,), then Gram’s Theorem is the statement
(2) So(Fy) — si(Fy) + s:(Fy) = 1.

Various elementary proofs of this result are known, see for example [7].

For i =0,1,2,3, write f;(P) for the number of i-faces of P, and
for i=0,1,2, write s;(P) = Eks,-(Fk), where summation is over the
f3(P) 3-faces of P. In particular, s,(P) = f,(P) since each 3-face F;

1
contributes 5 f2(P) to the sum, and each 2-face belongs to exactly two

3-faces. Summing (2) over all the 3-faces of P we obtain

3) so(P) — s1(P) + fL(P) = f3(P) .

However, by definition
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Y. 8(V) = foP) — so(P)
Y 8(E) = fiP) — si(P),

so (3) becomes

(fo(P) = L.8(V) = (f/1(P) - X,8(E)) + fo(P) = f5(P)

or,

L3V = X,8(E) = foP) = fi(P) + fo(P) — f3(P) = x(P)

which is (1), and the theorem is proved.

An exactly analogous argument holds in # dimensions (for all n > 3). In
the proof we use the (n — 1)-dimensional form of Gram’s Theorem (see [3],
[7]) for each (n — 1)-face F) of P:

So(Fyx) — S1(Fi) + S2(Fy) — oo + (= 1)" 7285, (Fy) = (= 1)”

with a notation analogous to that used in (2). This leads to the statement:

DESCARTES’ THEOREM IN n DIMENSIONS. Let P be an elementary
polytope in E", let 6(F")=1— s(F") be the deficiency of P at the
m-face F[' of P (m=0,1,...,n—23), and let §,(P) = ). ,8(F"), where
summation is over all the m-faces F! of P. Then

n-3
Y (= 1)m8,(P) = x(P),
m=0

where 1y (P) is the Euler characteristic of P.
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