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DESCARTES' THEOREM IN n DIMENSIONS

by Branko Grünbaum1) and G. C. Shephard

The elementary and beautiful theorem known as Descartes' Theorem was

discovered in the seventeenth century and is stated in Descartes' De Solidorum

Elementis. The manuscript was lost, however, and we only know of its contents

because a copy made by Leibnitz was discovered in the Royal Library
of Hanover in 1860. A transcription and translation of this manuscript,

together with comments, can be found in Federico's fascinating account of the

work [2].
Descartes proved his theorem for convex polyhedra by observing that the

sum of the "exterior" angles is equal to "eight solid right angles". Simpler

proofs, depending essentially upon Euler's theorem for polyhedra are now

known, and Descartes' Theorem has been extended to (possibly non-convex)

elementary polyhedra, see [5]. It has also been dualised, see [4].
In [5, p. 343], Hilton and Pedersen say "...there will be no straightforward

generalization to higher dimensions of Descartes' formula for the total angular
defect of a polyhedron... since this defect ceases in higher dimensions to be

a topological invariant". If only "defects" (or deficiencies as we prefer to call

them) at the vertices are considered, such a statement is undoubtedly true; but
there is a straightforward generalisation if deficiencies at faces of other dimensions

are taken into account. This was stated in [8] for convex polytopes. Here
we generalise Descartes' Theorem to elementary polyhedra (defined below) of
arbitrary dimension and Euler characteristic, besides giving a new and much
simpler proof.

Before stating this result we must be clear about the kind of polyhedra or
polytopes to which it applies. An (n - l)-dimensional convex polytope is any
bounded set of En~l which has non-empty (n- l)-dimensional interior and
can be expressed as the intersection of a finite number of closed halfspaces.
A family {/q ,F2, ...,Fr} of (n — l)-dimensional convex polytopes situated in
En is said to form an elementary polytope P (of n dimensions) if

l) Research supported in part by NSF grant DMS-8620181.
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(i) for each i and j, the intersection Ft n Fj is either empty or is a face of
each of Ft and Fj ; and

(ii) the union of all the Ft is an (n - l)-dimensional manifold.

The sets Ft are called the (n - l)-faces (or facets) of P, and the other faces

of P are the faces of the Ft. Two features of elementary polytopes must be

stressed: faces have no mutual intersections other than at their boundaries, and
the manifold may have arbitrarily high Euler characteristic. Elementary
polytopes have been considered in the literature under a variety of other

names; for example, in the 2-dimensional case they are called 44polyhedral

maps" in [1], while in the terminology of [3] they are cell-complexes which
are (n - l)-dimensional manifolds.

Throughout we shall use absolute angle measure. Here an angle, in any
number of dimensions, is measured as a fraction of the 44total" angle at a

point, that is, the angle subtended at a point by a sphere centred at that point.
1 1

Thus a right-angle is - and the (solid) angle at a vertex of a cube is -
4 8

With this method of measuring angles, many formulae are greatly simplified.
In particular, let P be a convex three-dimensional polytope (polyhedron) and

s{Vi) be the sum of the (plane) angles at a vertex Vt of P of all the 2-faces

of P incident with Vt. Then ô(Kz) 1 - s (Vi) is called the (angle) deficiency
of P at Vi9 and the classical form of Descartes' Theorem states

I/8(Fi) 2

For elementary polyhedra P of higher genus, the same equality holds with
the right side replaced by %(P), the Euler characteristic of P (see, for
example, [5], [6]).

We now state and prove the analogous theorem in four dimensions. At each

vertex Vt of a four-dimensional elementary polytope P, if we denote by s(Vi)
the sum of the (solid) angles at Vt of all the 3-faces of P incident with Vif
then

8(Vi) 1 - s(Vi)

is called the (angle) deficiency of P at vertex Vt. In a similar way, if we

denote by s(Ej) the sum of the (dihedral) angles at an edge Ej of all the

3-faces of P incident with Ej, then

8(Ej) 1 - s(Ej)

is called the deficiency of P at the edge Ej.



DESCARTES' THEOREM 13

Descartes' Theorem in Four Dimensions. Let P be an elementary

polytope in EA. Then

(1) ZiW) -
where the first summation is over all the vertices V-x of P, the second

summation is over all the edges Ej of P, and %(P) is the Euler

characteristic of P.

To illustrate this theorem, consider the boundary B of the 4-dimensional

(hyper)cube. This is a 3-manifold with %(B) 0; it consists of 8 cubes of
dimension 3, meeting by fours at each of the 16 vertices Vt of B, and by

threes at each of the 32 edges Ej of B. By the above,

11 11
5(KZ) l- 4x- - and &(Ej) 1 - 3 x - -

8 2 4 4

and (1) becomes

1 1

16 x 32 x - 0 %(P)
2 4

Proof of the theorem. We make use of the three-dimensional form of
Gram's Theorem (see [3], Section 14.1). Denoting by s0(Fk) the sum of the

solid angles at the vertices of the 3-face Fk, by sfFk) the sum of the dihedral

angles at the edges of Fk, and by s2(Fk) the sum of the "solid" angles at the

2-faces of Fk (which is equal, by convention, to - f2{Fk), where f2(Fk) is
2

the number of 2-faces of Fk), then Gram's Theorem is the statement

(2) s0(Fk) - Si(Fk) + s2(Fk) 1

Various elementary proofs of this result are known, see for example [7].

For f —0,1,2,3, write ffP) for the number of /-faces of P, and

for / 0,1,2, write sfP) where summation is over the

/3(P) 3-faces of P. In particular, s2(P) fi(P) since each 3-face Fk
1

contributes - f2(P) to the sum, and each 2-face belongs to exactly two

3-faces. Summing (2) over all the 3-faces of P we obtain

(3) s0(P) - sfP) + f2(P) MP)
However, by definition
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l,à(Vt) MP) - s0(P)

ZjSiEj)MP) - st(P)

so (3) becomes

(MP) - 1,8(I7,)) - (/,(/>)- 8 (£,)) + /2(P) MP)

or,

1,8(1',) - £,8(e,) MP) - MP) + MP) - MP) yJP)

which is (1), and the theorem is proved.
An exactly analogous argument holds in n dimensions (for all 3). In

the proof we use the (n - l)-dimensional form of Gram's Theorem (see [3],
[7]) for each (n - l)-face Fk of P:

So(Fk) ~ Si(Fk) + s2(Fk) - + (- 1 )n~2sn_2{Fk) (- \)n

with a notation analogous to that used in (2). This leads to the statement:

Descartes' Theorem in n dimensions. Let P be an elementary
polytope in En, let ô(jFf) 1 - s(F) be the deficiency of P at the

m-face Ff of P (m 0,1,3), and let 8m(P) ^^(Ff1), where

summation is over all the m-faces F of P. Then

n-3

I (-l)môm(P) x(
m 0

where %{P) is the Euler characteristic of P.
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