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LE PROBLEME FACILE DE WARING

par Philippe REVOY

SUMMARY. THE EASIER WARING PROBLEM. In the ill-named easier
Waring problem, the knowledge of the function v(k) is far from precise.
Except the trivial majoration G(k) + 1, we only have rather large majorations
for small k. In this note, I first give the classical facts and the particular cases
k=4 and k =5 and 1 give certain new identities which arose in a paper
of L. Vaserstein who gave a better bound for v(8). We finish by a short
description of the Tarry-Escott problem which is, for £k > 9, the only way to
get effective majorations of v(k).

Dans le probléme, nommé a tort facile de Waring, la connaissance de la
fonction v(k) reste encore imprécise: a I’exception de la majoration évidente
par G(k) + 1, on ne dispose que de majorations assez larges pour les premicres
valeurs de I’exposant k. Dans cet article, apres avoir repris les généralités
classiques et les cas particuliers k = 4 et kK = 5, je donne certaines identités
nouvelles englobant en la simplifiant une identité due a Vaserstein qui a
amélioré ainsi I’encadrement de v(8) et je termine par des indications sur le
probléeme de Tarry-Escott qui est pour £k > 9 la seule source des autres
majorations connues de v(k).

INTRODUCTION

Soit v(k) le plus petit entier s tel que tout entier est somme de s entiers de
la forme + z*, z entier. L’existence de v(k) pour tout k s’établit facilement
mais la détermination exacte de v(k) — le probléme «facile» de Waring — est
délicate. Seuls v(1) = 1 et v(2) = 3 sont connus; pour les valeurs supérieures,
on ne dispose que d’encadrement souvent larges. Ainsi 4 < v(3) < 5,
9 <v@) <10, v(5) € [5,10], v(6) € [6, 14], v(8) € [17,28],...([2], [8)]).
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L’existence de v(k) découle de I’identité suivante:

h=k-1
(1) Yoo (= Dk (x+ )K= kX + ¢
h=0

1
pour k = 2,c, € Z. Tout entier n s’écrit k!x + ¢, + m ou |m|< Ek!’
1 : : :
et m est somme d’au plus —2-k! termes 1% ou bien — 1%, d’ou I’existence et

1
la majoration grossiere v(k) < 2%-1 + Ek!’ qui est une égalité pour k£ = 2.

L’existence de la constante asymptotique G (k) du probléme de Waring (tout
grand nombre est somme d’au plus G(k) puissances ke d’entiers) donne:
v(k) < G(k) + 1. Pour tout entier n, choisissant N trés grand, n + N* sera
somme d’au plus G(k) puissances ki*m¢, d’ou le résultat et la majoration
v(k) = O(kLogk) d’apres les résultats de Vinogradov ([1]), ou les constantes
sont effectives. Cette majoration reste médiocre pour les petites valeurs de k
ou nous avons des majorations plus précises.

1. La méthode générale suivie ([2], [3]) est en fait de travailler sur les deux
cOtés: améliorer ’identité (1) pour obtenir un nombre de termes inférieur a
2%k-1 (possible si k> 3) et utiliser des congruences pour améliorer le terme

—k!. Pour n et k des entiers fixés, on pose égal a A(k;n) le plus petit

entier s tel que pour tout m la congruence m = + x’f + xlz‘ + ... % xf(n) a au
moins une solution.

L’existence de A(k;n) est évidente, avec la majoration A(k;n) < v(k)
puisque toute égalit¢ donne une congruence quel que soit le module. Une
fonction intéressante est A (k) = sup A(k;n) qui est inférieure ou égale a v(k),

n

seul moyen d’obtenir des minorations de v(k). Le calcul de A(k;n) peut se
faire en utilisant la décomposition en facteurs premiers n = p{'... py": on a

alors A(k;n) = sup A(k;p;"). Si p; ne divise pas k, A(k; p]") = Alk;p) < k
en utilisant le lemme de Hensel puis le théoreme de Chevalley; si p divise £,
la suite i~ A(k;p’) est stationnaire pour i > iy dépendant de I’entier v,(k),
encore une fois d’apres le lemme de Hensel. Les résultats les plus simples sont,
par exemple
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LEMME. AQ3) = 4,AQ2") =27+ si n>2. Si 2k+ 1 est premier,
Ak;2k+ 1) = k.

La premiére affirmation provient de 1’étude de x* modulo 9. Pour la
seconde, il suffit de calculer + x2" modulo 27+2 ([8]). Pour la troisieme,

X
comme p = 2k + 1 est premier x* = (—) mod p ou le second membre est
p

0, + 1, le symbole de Legendre. -
En ce qui concerne les identités, soit une égalité

h
) Y + P(x)k=Ax+ B
=]

ou A # 0 et ou les P; sont des polyndmes a coefficients rationnels et a valeurs
entieres. On pose vy (k) le plus petit des entiers 4 tel qu’il existe une identité (2)
avec 4 polyndomes P;: la finitude de v4(k) provient de (1) et on a
Vs (k) < 251, L’essentiel des résultats obtenus provient de

PROPOSITION. v(k) < v4(k) + A(k; A) < vi (k) + A(k).

C’est un décalque de la démonstration de I’'introduction. Notons que le
remplacement de A(k; A) par A(k) peut se traduire par une perte nette. Ainsi,
si k = 5, 'une ou l’autre des deux identités suivantes

(x+3)° = 2(x+2)° + x5+ (x—1)5 = 2(x —3)°

(3)
+ (x—4)5 = 720x — 360
ou
@ (x+3)5+ (x=3)5 — (x+1)5 — (x= )5 + 2(2%)°

— @x+1)5 — 2x—1)5 = 780x

qui donnent v, (5) < 8 fournissent aussi, du fait de A(5;720) = A(5;780) = 2,
la majoration v(5) < 10 = 8 + 2 alors que A(5) > A(5;11) = 5. L’identité 3)
est classique ([2]); ’identité (4) et d’autres seront données dans les paragraphes
sulvants. Pour le cas de I’exposant 3, le lecteur peut se reporter a [7]

ou I’essentiel des résultats connus est démontré avec des références biblio-
graphiques.
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2. ETUDE DES BICARRES

L’encadrement 9 < v(4) < 10 est di a W. Hunter ([3]); nous allons en
donner une présentation différente. Comme, modulo 16, x* = 0 ou 1, tout
entier de la forme 16n + 8 nécessite au moins 8 bicarrés, tous de méme signe;
comme 24 n’est pas somme de huit bicarrés, v(4) > 9. Le méme raisonnement
([8]) s’applique a toute puissance de 2: v(27) > 27*1 + 1, n > 2. L’inégalité
v(4) < 10 est plus délicate.

Ainsi on a:

(5) x+8)*— (x=—8)*+ 2x— 1D* — 2x+ 1)* = 4080x .

Comme 4080 = 16 X 3 X 5 X 17 et que modulo 3, modulo 5 et modulo 17
tout entler est somme algébrique d’au plus trois bicarrés, on a le

LEMME. Tout entier de [’une des formes suivantes: 16m, 16m + k,
ke {1,2,3} est somme algébrique d’au plus 7 bicarrés.

Nous allons maintenant utiliser une identité (2) due a W. Hunter, avec
h=7, maxd®°P;, =2 et Ax + B = 48x + 4, dont nous donnons la genese.
Soit P un polyndme a valeurs entieres:

(P+ 1)+ (P—1)* — 2P% = 12P2 + 2.

Si P est de degré pair, le degré du second membre sera multiple de 4 et on
peut chercher des polynOmes a valeurs entiéres Q; tels que

t
12P2 +2 - Y Ol =Ax + B,
i=1
soit si A # 0 une identité a ¢ + 4 termes. Nous prenons ici P(x) = 2x?
+ bx + cet Qi(x) = 2x + a;,i = 1,2,3, choix qui donne les relations
32X a; = 48b
24Y 0’ = 12(b% + 4c) .
11 est clair que b doit étre pair et en simplifiant les deux relations par 32
et par 24, comme X q,; et Eaf ont méme parité, b doit etre multiple de 4. Un

changement de variables donne b = 0 donc de a3 = — (o, + 0,) résulte
c=a’+ a0, + a; et le second membre est

Ax + B = 240,050 + 02)x + 10(a? + o0, +03)2 + 2.
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Le coefficient A est toujours un multiple de 48; le coefficient B ne peut &tre
que 2 ou + 4 modulo 16, ce dernier cas étant intéressant: ainsi, en choisissant

(ar,00) = (1,1)
(2x2 +4)% + 2x2+2)* — 2(2x2+3)* — (2x - 2)*

©) ~22x+ )4 = 48(x+2) — 4.

Cette identité permet de montrer

LEMME. Tous les entiers de la forme 16m + k, k € {4,5} sont somme
d’au plus 8 bicarrés. Ceux de la forme 16m + 6 sont somme d’au plus
9 bicarrés.

Pour obtenir la premiére partie du lemme, il suffit d’ajouter ou de
retrancher & 48X + 4 I’un des trois nombres 14, 24 ou 34. Pour la seconde,
il suffit d’utiliser la premiére partie et 14. Ces deux lemmes donnent la

PROPOSITION. Parmi 16 entiers consécutifs, 13 au moins sont somme
d’au plus 9 bicarrés.

Pour obtenir v(4) < 10, les nombres de la forme 16m = 7 ne posent pas
de probléme. Pour ceux de la forme 16m + 8, W. Hunter fournit des identités
a dix termes:

24(y +10319691) = (¥2+625)% + (¥2+603)* — (y2+ 626)*
(7) — (¥2+602)* + @y+1D* + Qy—-8N* + (¥ + 125)* + (y — 9)*

+ (y —41)* + (y — 83)*

et

24(y + 120858614086) — 8 = (y2+ 39873)* + (y* + 39851)
(8) — (¥*+39874)% — (¥2+39850)* + (4y + 11)* + 2y — 87)*

+ (¥ +1017)* + (y+883)* + (¥ —933)* + (y — 975)*

qui donne le théoréme v(4) < 10. L’origine de ces identités est analogug, bien
que plus compliquée, a celle de (6). On considére, & et k étant entiers,

Api(P)=P+h+k)*— (P+h*—- (P+k)*+ P* du second degré en P; il
faut choisir 4 et k et les polyndémes Q; de sorte que

6
Ani(P)— ¥ Qi = Ax + B.
=1

Remarquons que, dans I’identité (8), si y est pair tous les polyndmes ayant le
signe + sont impairs (il y en a 8) et tous les polyndmes ayant le signe moins
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sont ‘pairs: les nombres représentés sont donc de la forme 16m + 8. Pour
pouvoir éventuellement montrer que v(4) = 9, ou au moins que les nombres
16m + 7 sont somme d’au plus neuf bicarrés, il faut obtenir des identités ou
le nombre de polyndémes précédés du signe + et celui des polyndmes précédés
du signe — sont tres différents et il faut que beaucoup des premiers prennent
des valeurs impaires, tous les autres prenant des valeurs paires. Ainsi on peut
espérer pour B un résidu modulo 16 le plus élevé possible par rapport au
nombre total # de polyndmes. Ainsi on pourrait envisager de chercher une
identité de la forme

s
) (P+o)*—P*+ ) Ql = Ax + B,
i=1
avec o impair, P prenant des valeurs paires et les Q; des valeurs impaires.
Alors on aurait B=s + 1 (16) ce qui fournirait des identités utilisables
pour les nombres de la forme 16m + 7 et =+ 8. Cependant, comme
d°((P+ a)*— P*) = 0(3), il faut que le degré de P soit un multiple de 4 et
que ’un des Q; au moins soit de degré multiple de 3.
On peut obtenir d’autres identités avec des bicarrés; par exemple

(10) Y (@x+1)* = (ax—1D* = 8() a)x

i=1
4
si Z af = 0, d’ou des identités pour 48x -avec les suites (3,4,5, —6),

=1
(10,9, — 12, — 1), (27,16, — 19, — 18)... (noter que Xa; = X a;(6) est toujours
divisible par 6).
D’autres identités a 4, 5 ou 6 termes peuvent s’obtenir facilement a 1’aide
N t
de solutions triviales ou non triviales des équations ), X; = ), Y] ou les

i=1 j=1

couples (s, ) sont (2,2), (3,2) ou (3, 3).

3. IDENTITES ET PROBLEMES DE TARRY-ESCOTT

L’identité (3), de degré 5, est le cas particulier d’identités beaucoup plus
~ générales. Ainsi

SNeN)) Y (x+a) - Y x+b)k=Ax+ B avec A #0
i ' J=1

i=1
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si Y al=Y blpour I<h<k-2et YalTt#E Lo
i Jo

On appelle M (k) le plus petit entier 4 tel qu’il existe une identite (1 1): on
a Uy (k) < 2M (k).

La recherche de systemes (a,...,a; b, ..., bs) telles que (S;): Z a? = Z ajl?
! J

pour h=1,2,...,t constitue le probleme de Tarry-Escott (2], [9]).
Remarquons que (S,) équivaut a 1’égalité des ¢ premiéres fonctions symé-
triques élémentaires des s-uples (a;) et (b;): si ¢ > s alors les a; et les b; sont
égaux, a une permutation pres. Ainsi dans (11), la condition Zaf‘l * be‘l
ne peut étre satisfaite que si s > k — 2. Désignons par p(k) le plus petit des
entiers s > k tel qu’il existe deux s-uples différents ayant les mémes fonctions
symétriques élémentaires de degré 1, 2, ..., k. La conjecture dans ce probleme
est que p(k) = kK + 1, résultat qui n’est connu que par des exemples
numériques pour k < 10. II est conjecturé que p(k—2) = M(k): on a
clairement I’inégalité p(k — 2) < M(k), mais on sait seulement montrer I’alter-
native: p(k —2) = p(k— 1) ou bien p(k —2) = M(k).

En particulier p(k — 2) = M(k) si et seulement si la suite p(k) est strictement
croissante, ce qui n’est pas démontré. Tous les exemples numériques de s-uples
donnant des majorations de p(k), par exemple pour k¥ < 30 fournissent en fait
des majorations de M(k) et permettent de ’utiliser pour majorer vy (k). De
cela, découle par exemple les majorations v.(6) < 10, v (7) < 12 et
V% (8) < 14. Avec A(8) < 16, ceci donne v(8) < 30. Dans une courte note ([8],
L. Vaserstein montre en fait que v4(8) < 12 et rappelle une identité donnant
Vx(6) < 8. Nous allons maintenant en donner 1’idée, obtenant ainsi une
identité plus simple que celle de [8].

Soient 4n entiers positifs

ai, biaaj{: bjlyl < I;J < n
et

S() = X (ax+b)** — (@x—b)* + Y (@x—b))* — (ajx+ b)) :
i J

¢’est un polyndme impair en x dont les coefficients sont des multiples entiers
des sommes

4

_ 2k—(2h+1) 1.2h+1 1 2k—QRh+1), ,2h+1
Sp= 1 a; b — Y a4l b, h=0,1,.., k—1.

i i
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Le polyndme S sera du premier degré, et nonnul, si So = S, = ... = 5., =0
et Sy_; # 0. Pour annuler S, ..., St_», il suffit d’imposer les relations: pour
i=1,...,n

,2k—1

b,-=a~ bl

! I

2%k -1
a;

2k—-Qh+1) 22h+1 _ _,2k=Qh+1), ,2h+1 _
a,- bi —_ Sh(i) bsh(i) Iy h — 1, ceey k - 2
ou s, est une permutation de {1,2,...,n} sans points fixes telles que
Sy, (i) # su,(i) pour tout i et h; # h, (sinon on aurait a b = a;ak bf" pour

o r
deux couples (o,,Bx) non proportionnels, d’ou ii = (Z) ' pour deux
a .
rationnels r; et r, différents ce qui donne g; = aj{. et b;=b;). On peut
prendre par exemple pour s, la puissance A#m¢ de la permutation circulaire
i~ i+ 1 modulo n. Il y a 4n paramétres et n(k — 1) relations de sorte que
2 < k < 4 et nous obtenons ainsi des identités de degre 4, 6 ou 8.
En degré 4, (ax+b)* — (ax—b)* + (cx—d)* — (ecx+d)* = Ax avec
A = 8(ab?—cd?) si a®*b = c3d. La, une analyse directe permet de supposer
(a,c) = 1. Alors b = rc? et d = ra?® d’aprés le lemme d’Euclide; choisissant
a=1,c=2cetr=1, on obtient (5) et aucun choix de a, ¢ et r ne permet
d’obtenir de meilleure identité.
En degré 6, il y a 8 paramétres liés par les 4 relations: a; b; = a{sb,f et
1‘,3-1 iljl’i =1,2.
En passant au logarithme on obtient le systéme linéaire homogéne

i

343
a:b; =a

. 5a,-+b,-—5a,~'—b,f=0
i=1,2,
ai+b—aj,,—bi,, =0,

ou les 8 inconnues sont encore notées a;, a;, b;, b;.
L’espace des solutions, de dimension 4, est formé des vecteurs

(al,blya29 b?.’aiab;)a;’bé)
=W+o,5w+hu+w+ho,u+v+w,hu+hv+5w),

u, v, w et h étant des scalaires. En repassant a I’exponentielle et en remplacant
ux par x, on obtient

(vx + w3h)® + (Whx +0)¢ — (vx — w3h)® — (Whx —v)°®
(12) + (bwx — h)S + (hx —ow3)® — (bwx + h)® — (hx + vw?>)®
= 120wh(h* - 0vH) (W - Dx,

identité de Rao qu’on peut rendre homogene.
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En degré 8, il y a 12 variables et 9 relations:
albi=a;'bi;alb} = ail b1, et albi=al;biis,

i = 1,2,3. En linéarisant, on obtient un systtme homogene de 9 équations
linéaires & 12 inconnues encore notées (a;,a,,b;,b!); lespace vectoriel des
solutions, de dimension au moins 3, contient le plan engendré par les vecteurs
(a=a;=1;0;=b;=0) et (a; = a;=0;0,=b; = 1). 11 suffit de trouver les
solutions du systéme vérifiant @, = b] = 0; la premiére équation devient
b, —7a, =0 et on prend @; comme parametre d’ou un systéme de huit
équations a huit inconnues ga;, a;, b;, b;, i > 2. Le rang du systéeme est 7 et sa
résolution donne deux autres solutions indépendantes du systéme initial

(5,6,0,6,5,0;7,0,10,0,7,10)
et
(,5,6,0,6,5;10,7,0,10,0,7) ,

ce qui donne, en rendant homogene
(a5cl2x+a7b10)8 . (a6b5C6x+b7CIO)8 + (b6C“X+010C7)8
_ (@5c2x—aTh10)8 — (aSh3cSx — bTc10)8 — (bScllx — alocT)®
(13)  + (abc''x—b9c")8 + (a°bbcSx —a’c'®)® + (b5cPx—a''b7)®
— 16a6b6C12(C16 _ al6)(C16 _ bl6) (b16 . a16)Rx
oll R est la somme de six monOmes: X a32b3% + X a3?bl6cle,
Cette identité est de degré total 136 en a, b, ¢ alors que I’identité analogue

de [8] est de degré 1128; cela permet donc de dire que v4(8) < 12 et v(8) < 28
comme le dit le titre de [8].

En degré 10 et plus, nous n’avons pas de tel schéma de simplification;
cependant la construction précédente donne des identités en degré 5, 7 et 9 mais
de longueur trop grande en degré 7 et 9 et qui en degré 5 donne par exemple
I’identité (4). Nous partons en degré 5 de
P,y o(x) =(ax+ D)’ — (ax+ b)’ + (ax—¢)’ — (ax +¢)°®

= Cia3(b2—c)x3 + Cla(b*—cYx et Pup o(X) — Py pr oo (%)
est un polyndme du premier degré si et seulement si
a(b2-ct)=a’ (b’ -c"?2).

On peut faire plusieurs choix des six paramétres: a’ =2, a=c=5b" = 1
b =3 et ¢’ =0 donne I’identité (4). On peut aussi prendre

b
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73

1 1
a=kaP, a’=ko'B', b=_(a"+B"), c=>(a" =),

1 1
" — (3 3 ' — Z (3 _R3
b 2((1 +B3), ¢ 2((1 B),

ce qui donne une identité plus complexe. On peut aussi choisir ¢ = ¢’ = 0 et
C, . . ,3,,2 N .,
linéariser la relation a3b? = a’ b’", d’ou ’identité

(x+ow?)’ + (x —ow3)’ — (W2x +0)° — (W+2x—0)° + 2(W?x)3

(14)
— 2x3 = 100*w?(w' = 1)x ,

identité de longueur 8 (on remarquera que le coefficient A de x du second
membre est toujours un multiple de 11 car w!2 — w? = 0(11) et que A(5;11)
=5 > A(5;720) ou A(5;780).

"~ En degré 7, on considere une somme

2
Z Pai’bi: ¢y - Pa;’bilvci’

i=1
on pose alors ¢; = ¢; = 0 et on a les quatre relations
592 15442 324 43 4.4
a;b; = a; b, et a;b; =a; b,
ce qui donne finalement I’identité
(bic*x £ ab3c)’ + (b*c*x £ ab’c'®)7 — (bbx +acB)’ — (c¥x + ab?)’

15
(15) + 2x7 (B + 56 — h2BcB — pl4c28) = 14abieB3(b2 — M) (¢ — bT)x

dont le premier membre contient 16 puissances septiemes, ce qui est supérieur
a v (7) < 2M(7) = 12.
De méme en degré 9, on partira de

3
Y Pov,o— Pt b0
=1
et on obtient par la méme méthode (systeme lin€éaire de 9 équations a
12 inconnues) une identité dont le premier membre est la somme de 24 puis-
sances 9¢mes, Les coefficients a;, a;, b;, a/ sont donnés dans le tableau suivant:

a a’ , b b’
1 v N uw!lo up’wlo
2 wo w8 upow’7 up o

3 U6y 8 VE¥we uv’ uw’
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Le coefficient de x de second membre est 4 = 18udvdwé(w!¥ —v'¥)Q(v, w)
ou QO est le polyndme

Q(X,)") = x>* + y54 — x54y54 4 x36 4+ y36 + x18»18 4 x36y18 + x18y36 .

La longueur de I’identité est 24 ce qui la rend pratiquement inutile.

5. RETOUR SUR LE PROBLEME DE TARRY-ESCOTT

En degré k suffisamment petit, beaucoup d’identités et donc de majo-
ration de v4(k) proviennent de s-uples (aj,...,as) et (by,...,bs) dont les
k — 2 premieres fonctions symétriques élémentaires coincident. On écrira
alors suivant une notation classique dans cette question [a@;,...,d]x-2
= [by,bs,...,bs]k—>. La recherche systématique de tels s-uples se fait en
général inductivement, a ’aide des deux opérations suivantes ([4], [6]).

LEMME. Si [a,,...,alx = [b1,....D ]k, alors quel que soit x

1) [ala'--aal'9b1+x;b2+x:---:br+x]k+l
= [01+X,02+X,...,a,-+x,b1,b2,...,br]k+1 .
2) lay,...,a, a1 +x,...,a,+ Xl = [b1,...., 0., b1+ X, ..., 0, +X]« .

Naturellement la longueur des s-uples déduit par le procédé récurrent est
le double des s-uples de départ mais un choix judicieux peut permettre de
réduire cette longueur: en effet chaque fois que 'on a a; + x = a; (resp.
b, + x = b,) on pourra supprimer dans 1’égalité des deux crochets, les termes
égaux, aussi pour appliquer la regle en question on calcule {a;—a;/i>j} et
{b;j—b;/i>j} et on choisit pour x I’'un des entiers qui est le plus souvent une
différence de deux a; et de deux b;. Ainsi partant de [0,3], = [1,2], en
ajoutant 3 puis 5 puis 7, on trouve [0,4,5],=[1,2,6],, [0,4,7,11],
= [1,2,9,10]; et [0,4,8,16,17], = [1,2,10,14,18]4 ce qui montre que
pk) =k +1 pour k<4 et que vg(k) =2(k—1) pour kK < 6. On peut
développer cette technique et s’essayer a trouver de nombreux exemples de
s-uples vérifiant [a,...,a], = [b1,...,bs], mais il n’est pas évident de
minimaliser s par rapport a A.

On peut aussi opérer littéralement en partant de [a, b]; = [c,a + b — ], en
prenant x dans le Z-module libre de base (a, b, ¢). On prend x = b — a d’ou
[a,b+c—a,2b—cl, = [c,a+b—c, 2b—al,; ensuite on peut prendre
y=a—2b+ c d’ou



234

P. REVOY

[b+c—a,2b—c,a—2b+ 2c,2a — b]s
=R2b—a,a+b—-c,2a—-2b+c, — b+ 2c]s

ce qui fournit une famille d’identités

4
Y (x+a)®— (x+b)°=Ax+ B

i=1

ou A est un polyndme homogéne de degré 4. L’identité (3) en est un cas
particulier provenant de [0, 3,4,7]; = [1,1,6,6]; qu’on peut obtenir a partir
de [0,4,5], = [1,2,6], en ajoutant 1 (au lieu de 7). L’existence de plusieurs
choix possibles pour x rajoute a la difficulté d’une étude systématique qui pour
I’instant n’a fourni ainsi que des exemples. On trouvera dans [9] des références
bibliographiques ainsi que des majorations explicites pour p(k) et M (k) définis
dans la partie précédente.

(3]
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