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L'Enseignement Mathématique, t. 37 (1991), p. 223-234

LE PROBLÈME FACILE DE WARING

par Philippe Revoy

Summary. The easier Waring problem. In the ill-named easier

Waring problem, the knowledge of the function v(k) is far from precise.

Except the trivial majoration G(k) + 1, we only have rather large majorations

for small k. In this note, I first give the classical facts and the particular cases

k 4 and k 5 and I give certain new identities which arose in a paper
of L. Vaserstein who gave a better bound for u(8). We finish by a short

description of the Tarry-Escott problem which is, for k ^ 9, the only way to

get effective majorations of v(k).

Dans le problème, nommé à tort facile de Waring, la connaissance de la

fonction v(k) reste encore imprécise: à l'exception de la majoration évidente

par G(k) + 1, on ne dispose que de majorations assez larges pour les premières
valeurs de l'exposant k. Dans cet article, après avoir repris les généralités
classiques et les cas particuliers k 4 et k 5, je donne certaines identités
nouvelles englobant en la simplifiant une identité due à Vaserstein qui a

amélioré ainsi l'encadrement de u(8) et je termine par des indications sur le

problème de Tarry-Escott qui est pour k ^ 9 la seule source des autres

majorations connues de v(k).

Introduction

Soit v(k) le plus petit entier s tel que tout entier est somme de 5 entiers de

la forme ± zk, z entier. L'existence de v(k) pour tout k s'établit facilement
mais la détermination exacte de u(k) — le problème «facile» de Waring — est
délicate. Seuls v(l) 1 et v(2) 3 sont connus; pour les valeurs supérieures,
on ne dispose que d'encadrement souvent larges. Ainsi 4 ^ u(3) ^ 5,
9 ^ v(4) ^ 10, u(5) e [5,10], v(6) e [6,14], u(8) e [17,28],... ([2], [8]).
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L'existence de v(k) découle de l'identité suivante:

h k- 1

(1) £ (-\)k-l-hChk_l(x + h)k k\+
h 0

l l
1

pour k ^ 2, ck e Z. Tout entier n s'écrit k\x + ck + m où | m | ^ -k \,
2

et m est somme d'au plus -k\ termes lk ou bien - \k, d'où l'existence et
2

la majoration grossière v(k) ^ 2k~l + - kl, qui est une égalité pour k 2.

L'existence de la constante asymptotique G{k) du problème de Waring (tout
grand nombre est somme d'au plus G(k) puissances kïèmes d'entiers) donne:

v(k) ^ G(k) + 1. Pour tout entier n, choisissant N très grand, n + Nk sera

somme d'au plus G(k) puissances Uème, d'où le résultat et la majoration
u(k) O(kLogk) d'après les résultats de Vinogradov ([1]), où les constantes

sont effectives. Cette majoration reste médiocre pour les petites valeurs de k
où nous avons des majorations plus précises.

1. La méthode générale suivie ([2], [3]) est en fait de travailler sur les deux

côtés: améliorer l'identité (1) pour obtenir un nombre de termes inférieur à

2k~l (possible si k> 3) et utiliser des congruences pour améliorer le terme

-kl. Pour n et k des entiers fixés, on pose égal à A(k\n) le plus petit
2

entier y tel que pour tout m la congruence m ± x\ ± xk2 ± ± xks(n) a au

moins une solution.
L'existence de IS.{k\n) est évidente, avec la majoration lx(k\ri) ^ v(k)

puisque toute égalité donne une congruence quel que soit le module. Une

fonction intéressante est A(k) sup A(k;ri) qui est inférieure ou égale à u(k),
n

seul moyen d'obtenir des minorations de v{k). Le calcul de A(k\ri) peut se

faire en utilisant la décomposition en facteurs premiers n p\l ...plAî on a

alors A(k;n) sup A(k;p^). Si pt ne divise pas k, A(k\pf') A(&;/?/) ^ k
i

en utilisant le lemme de Hensel puis le théorème de Chevalley; si p divise k,

la suite i ^ A (k;p*) est stationnaire pour i ^ i0 dépendant de l'entier up(k),

encore une fois d'après le lemme de Hensel. Les résultats les plus simples sont,

par exemple



LE PROBLÈME FACILE DE WARING 225

Lemme. à(3) 4, A(2n) 2n + l si n ^ 2. Si 2k + 1 est premier,

A(k;2k + 1) ^ k.

La première affirmation provient de l'étude de x3 modulo 9. Pour la

seconde, il suffit de calculer ± x2" modulo 2n + 1 ([8]). Pour la troisième,

comme p — 2k + 1 est premier xk j - j modp où le second membre est

0, ± 1, le symbole de Legendre.

En ce qui concerne les identités, soit une égalité

h

(2) I ± Pi(x)k Ax + B
/= î

où A ^ 0 et où les Pt sont des polynômes à coefficients rationnels et à valeurs

entières. On pose u*(k) le plus petit des entiers h tel qu'il existe une identité (2)

avec h polynômes P,: la finitude de v*(k) provient de (1) et on a

v*(k) ^ 2k~l. L'essentiel des résultats obtenus provient de

Proposition. u(k) ^ u*(k) + A(k\A) ^ v*(k) + A (k).

C'est un décalque de la démonstration de l'introduction. Notons que le

remplacement de A(k;A) par A(&) peut se traduire par une perte nette. Ainsi,
si k 5, l'une ou l'autre des deux identités suivantes

(x + 3)5 - 2(x + 2)5 + x5 + (x - l)5 - 2(x — 3)5

+ (x-4)5 720x - 360

ou

(x+3)5 + (x - 3)5 - (x+ l)5 - (x - l)5 + 2(2x)5
(4)

- (2x+ l)5 - (2x- l)5 780x

qui donnent y* (5) < 8 fournissent aussi, du fait de A(5 ; 720) A(5 ; 780) 2,
la majoration u(5)< 10 8 + 2 alors que A(5) ^ A(5; 11) 5. L'identité (3)
est classique ([2]); l'identité (4) et d'autres seront données dans les paragraphes
suivants. Pour le cas de l'exposant 3, le lecteur peut se reporter à [7]
où l'essentiel des résultats connus est démontré avec des références
bibliographiques.
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2. Etude des bicarrés

L'encadrement 9 ^ u(4) ^ 10 est dû à W. Hunter ([3]); nous allons en

donner une présentation différente. Comme, modulo 16, x4 0 ou 1, tout
entier de la forme \6n + 8 nécessite au moins 8 bicarrés, tous de même signe;

comme 24 n'est pas somme de huit bicarrés, u(4) ^ 9. Le même raisonnement

([8.]) s'applique à toute puissance de 2: u(2n) ^ 2n + l + 1, n ^ 2. L'inégalité
v{4) ^ 10 est plus délicate.

Ainsi on a:

(5) (x + 8)4 - (x - 8)4 + (2x - l)4 - (2x + l)4 4080x

Comme 4080 =16x3x5x17 et que modulo 3, modulo 5 et modulo 17

tout entier est somme algébrique d'au plus trois bicarrés, on a le

Lemme. Tout entier de Tune des formes suivantes: \6m, 16m ± k,
k 6 {1,2,3} est somme algébrique d'au plus 7 bicarrés.

Nous allons maintenant utiliser une identité (2) due à W. Hunter, avec
h 7, maxd°Pi 2 et Ax + B 48x + 4, dont nous donnons la genèse.

Soit P un polynôme à valeurs entières:

(P+ l)4 + (P - l)4 - 2P4 12P2 + 2

Si P est de degré pair, le degré du second membre sera multiple de 4 et on

peut chercher des polynômes à valeurs entières Qt tels que
t

12 P2+2- ZQ*
/'= 1

soit si A ^ 0 une identité à t + 4 termes. Nous prenons ici P(x) 2x2

+ bx + c et Q/(x) 2x + a,-, / 1,2,3, choix qui donne les relations

'32Ea/ 48b

\24Za- \2(b2 + 4c)

Il est clair que b doit être pair et en simplifiant les deux relations par 32

et par 24, comme La/ et la- ont même parité, b doit être multiple de 4. Un

changement de variables donne b 0 donc de a3 - (ai + a2) résulte

c ai + aia2 + a2etle second membre est

Ax + B 24aja2(ai + a2)x + 10(ai + aia2 + a])2 + 2
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Le coefficient A est toujours un multiple de 48; le coefficient B ne peut être

que 2 ou ± 4 modulo 16, ce dernier cas étant intéressant: ainsi, en choisissant

(<Xi,a2) (1,1)

(2x2 + 4)4 + (2x2 + 2)4 - 2(2.x:2 + 3)4 - (2x - 2)4
(6)

- 2(2x+l)4 48(x + 2) - 4

Cette identité permet de montrer

Lemme. Tous les entiers de la forme 16m ± k, k e {4,5} sont somme

d'au plus 8 bicarrés. Ceux de la forme 16m ± 6 sont somme d'au plus
9 bicarrés.

Pour obtenir la première partie du lemme, il suffit d'ajouter ou de

retrancher à 48X ± 4 l'un des trois nombres l4, 24 ou 34. Pour la seconde,

il suffit d'utiliser la première partie et l4. Ces deux lemmes donnent la

Proposition. Parmi 16 entiers consécutifs, 13 au moins sont somme
d'au plus 9 bicarrés.

Pour obtenir u(4) ^ 10, les nombres de la forme 16m ± 7 ne posent pas
de problème. Pour ceux de la forme 16m + 8, W. Hunter fournit des identités
à dix termes:

24(y + 10319691) - (y2 + 625)4 + (y2 + 603)4 - (y2 + 626)4

(7) - (y2 + 602)4 + (4y + 11)4 + (2y-87)4 + (y + 125)4 + (y- 9)4

+ (y-4l)4 + 0>-83)4

et

24(y + 120858614086) - 8 (y2 + 39873)4 + (y2 + 39851)4

(8) - (y2 + 39874)4 - (^2 + 39850)4 + (4y + 11)4 + (2y - 87)4

+ (y + 1017)4 + (y + 883)4 + (y - 933)4 + (y - 975)4

qui donne le théorème u(4) ^ 10. L'origine de ces identités est analogue, bien

que plus compliquée, à celle de (6). On considère, h et k étant entiers,
&h,k(P) (P + h + k)4 - (P + h)4 - (P + k)4 + P4 du second degré en P; il
faut choisir h et k et les polynômes Qt de sorte que

6

A h,k(P)-L ô/ =Ax+
/= 1

Remarquons que, dans l'identité (8), si y est pair tous les polynômes ayant le
signe + sont impairs (il y en a 8) et tous les polynômes ayant le signe moins
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sont pairs: les nombres représentés sont donc de la forme 16m + 8. Pour

pouvoir éventuellement montrer que v(4) 9, ou au moins que les nombres
16m ± 7 sont somme d'au plus neuf bicarrés, il faut obtenir des identités où

le nombre de polynômes précédés du signe + et celui des polynômes précédés

du signe - sont très différents et il faut que beaucoup des premiers prennent
des valeurs impaires, tous les autres prenant des valeurs paires. Ainsi on peut
espérer pour B un résidu modulo 16 le plus élevé possible par rapport au

nombre total h de polynômes. Ainsi on pourrait envisager de chercher une
identité de la forme

s

(9) (P+a)4-P4+ £QÎ Ax + B\
i= 1

avec a impair, P prenant des valeurs paires et les Q, des valeurs impaires.
Alors on aurait B s + 1 (16) ce qui fournirait des identités utilisables

pour les nombres de la forme 16m ± 7 et ±8. Cependant, comme

d°((P + a)A - PA) 0(3), il faut que le degré de P soit un multiple de 4 et

que l'un des Qt au moins soit de degré multiple de 3.

On peut obtenir d'autres identités avec des bicarrés; par exemple

4

(10) Y, a>x+!)4 - l)4 8(ü ai)x
i= 1 i

4

si Y, a) 0, d'où des identités pour 48x avec les suites (3,4,5,-6),
/= i -

(10,9, - 12, - 1), (27,16, - 19, - 18)... (noter que Ztf, lLa]{6) est toujours
divisible par 6).

D'autres identités à 4, 5 ou 6 termes peuvent s'obtenir facilement à l'aide
s t

de solutions triviales ou non triviales des équations £ X\ £ Y4j où les
/ i j -1

couples (s,t) sont (2,2), (3,2) ou (3,3).

3. Identités et problèmes de Tarry-Escott

L'identité (3), de degré 5, est le cas particulier d'identités beaucoup plus

générales. Ainsi

(11) Xi (x + a')k ~ ü (x + bj)k Ax + B avec A^O
i=l j= i
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si £ a 'f £ bj pour 1 ^ h ^ k - 2 et £ ßf
1 ^ D ^ 1

•

/ j
On appelle M(k) le plus petit entier h tel qu'il existe une identité (11): on

a u*(k) ^ 2M(fc).

La recherche de systèmes {ax,as; bx bs) telles que (St): X ~ S aj
i j

pour h 1,2, t constitue le problème de Tarry-Escott ([2], [9]).

Remarquons que (St) équivaut à l'égalité des t premières fonctions
symétriques élémentaires des s-uples (#/) et (bj) : si t ^ s alors les a, et les bj sont

égaux, à une permutation près. Ainsi dans (11), la condition Eaf-1 Zbj
ne peut être satisfaite que si s > k - 2. Désignons par p(k) le plus petit des

entiers s > k tel qu'il existe deux s-uples différents ayant les mêmes fonctions

symétriques élémentaires de degré 1,2, k. La conjecture dans ce problème
est que p(k) k + 1, résultat qui n'est connu que par des exemples

numériques pour k ^ 10. Il est conjecturé que p(k-2) M(k): on a

clairement l'inégalité p(k - 2) ^ M(k), mais on sait seulement montrer l'alternative:

p(k~ 2) p(k- 1) ou bien p(k- 2) M(k).

En particulier p(k - 2) M(k) si et seulement si la suite p(k) est strictement
croissante, ce qui n'est pas démontré. Tous les exemples numériques de s-uples
donnant des majorations de p(k), par exemple pour k ^ 30 fournissent en fait
des majorations de M(k) et permettent de l'utiliser pour majorer u*(k). De
cela, découle par exemple les majorations y*(6) < 10, u*(l) ^ 12 et

f*(8) ^ 14. Avec À(8) ^ 16, ceci donne u(S) ^ 30. Dans une courte note ([8],
L. Vaserstein montre en fait que y*(8) ^ 12 et rappelle une identité donnant
v*(6) ^ 8. Nous allons maintenant en donner l'idée, obtenant ainsi une
identité plus simple que celle de [8].

Soient An entiers positifs

ai9 bj, a), bj, 1 ^ ij ^ n
et

S(x) -L (a,x+ bj)2k- {cijX - bj)2k+ L - :
1 j

c'est un polynôme impair en x dont les coefficients sont des multiples entiers
des sommes

s„ i «r(2"+i>èr1- z ap-^^'b;2"'1, h o,i,k -1
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Le polynôme S sera du premier degré, et non nul, si S0 Sx Sk-2 0

et Sk_x =5fc 0. Pour annuler S0,S^_2, il suffit d'imposer les relations: pour
/ 1, n

-,2k- 1 7

a/ £, ö/ 0f-...
2k-(2h + 1) l2/z + 1 ,2k-{2h + 1) ,2h+ 1 ~

at ,bi =aShii) bSh(i) /z 1, ...,£-2
où 5/, est une permutation de {1,2,...,«} sans points fixes telles que

sh[(i) shl(i) pour tout i et hx ^ h2 (sinon on aurait afkb^k a'j°'ktfk pour
a i I rk

deux couples (a^ß^) non proportionnels, d'où — (-1\ pour deux

rationnels rx et r2 différents ce qui donne a-t - a]
prendre par exemple pour sh la puissance /zième de la permutation circulaire
/ i 4- 1 modulo n. Il y a 4n paramètres et n(k - 1) relations de sorte que
2 ^ k ^ 4 et nous obtenons ainsi des identités de degré 4, 6 ou 8.

En degré 4, (ax + b)4 - (ax - b)4 + (ex - d)4 - (ex + d)4 Ax avec

A % (ab3 - cd3) si a3b c3d. Là, une analyse directe permet de supposer
(a,c) 1. Alors b rc3 et d ra3 d'après le lemme d'Euclide; choisissant

a 1, c 2 et r 1, on obtient (5) et aucun choix de a, c et r ne permet
d'obtenir de meilleure identité.

En degré 6, il y a 8 paramètres liés par les 4 relations: a]bi a'5b- et

a)b) a'ihb-li,!1,2.
En passant au logarithme on obtient le système linéaire homogène

et b-, b]).Onpeut

i 1
15a, + bi - 5a,'

'} a,+ bi -
-b' Q

~ b'i+i 0

où les 8 inconnues sont encore notées aiy a\, bi9 b-.
L'espace des solutions, de dimension 4, est formé des vecteurs

(ax,bx,a2, b2ia[,b'Xia'2,b2)

(u + u,5w + h, u + w + h, u,u + d + w, h,u + h,u + 5 w),

w, u,w et h étant des scalaires. En repassant à l'exponentielle et en remplaçant

ux par x, on obtient

(wt+ w5h)6 + (whx + u)6 - (ux - w5h)6 - (whx-u)6

(12) + (uwx-h)6 + (hx-uw5)6 - (uwx+h)6 - (hx + uw5)6

\2uwh(h4 - v4)(w14 - \)x

identité de Rao qu'on peut rendre homogène.
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En degré 8, il y a 12 variables et 9 relations:

a]bj a-1 b-; a]b)ß,'+i^;+i et a)b\ a'^bf^

i 1,2,3. En linéarisant, on obtient un système homogène de 9 équations

linéaires à 12 inconnues encore notées (fl,, l'espace vectoriel des

solutions, de dimension au moins 3, contient le plan engendré par les vecteurs

(a/ a'j 1 ;bt b\ 0) et (a< - a] 0;bt b- 1). Il suffit de trouver les

solutions du système vérifiant ax b[ 0; la première équation devient

bx - la[ 0 et on prend a\ comme paramètre d'où un système de huit

équations à huit inconnues at, a-, bx, b -, i ^ 2. Le rang du système est 7 et sa

résolution donne deux autres solutions indépendantes du système initial

(5,6,0,6,5,0 ; 7,0,10,0,7,10)
et

(0,5,6,0,6,5; 10,7,0,10,0,7)

ce qui donne, en rendant homogène

(a5cl2x + a7b10)8 + (a6b5c6x + Z?7c10)8 + (b6cux + al0c1)s

- (a5cl2x-a7bw)s - (a6b5c6x-b7c10)8 - (b6cnx - al0c7)8

(13) + (a6cnx - bl0c7)8 + (a5b6c6x - a7c10)8 + (b5cnx - a{0b7)8

- (a6cux + bl0c7)8 - (a5b6c6x + a7c10)8 - (b5cl2x + al0b7)8

16a6b6cl2(c16 — al6)(c16 - bl6)(b16 — al6)Rx

où R est la somme de six monômes: Ha32b32 4- Ha32bl6c16.

Cette identité est de degré total 136 en a, b, c alors que l'identité analogue
de [8] est de degré 1128; cela permet donc de dire que i>*(8) ^ 12 et u(8) ^28
comme le dit le titre de [8].

En degré 10 et plus, nous n'avons pas de tel schéma de simplification;
cependant la construction précédente donne des identités en degré 5, 7 et 9 mais
de longueur trop grande en degré 7 et 9 et qui en degré 5 donne par exemple
l'identité (4). Nous partons en degré 5 de

Pa,b,c(x) (ax+b)5 - (iax+b)5 + (ax-c)5 - (,ax + c)5

C]a\b2 - c2)x2 + Cla(bA - c4)x et P0,biC(x)

est un polynôme du premier degré si et seulement si

a3(b2-c2) a'\b'2 - c,22)

On peut faire plusieurs choix des six paramètres: a' 2, a c b' 1,

b 3 et c' 0 donne l'identité (4). On peut aussi prendre
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a kaf>, a' fca'ß', b -(a'3 + ß'3), c - (a'3 - ß'3)
2 2

1 1

b' -(a3 + ß3), c' - (a3 - ß3)
2 2'

ce qui donne une identité plus complexe. On peut aussi choisir c c' 0 et

linéariser la relation a3b2 a'^b'2, d'où l'identité

(x + uw3)5 + (x-uw3)5 - (w2x + u)5 - (w + 2x-v)5 + 2(w2x)5
(14)

- 2x5 10P4W2(W10- 1)X

identité de longueur 8 (on remarquera que le coefficient A de x du second

membre est toujours un multiple de 11 car w12 - w2 0(11) et que A(5 ; 11)

5 > A(5 ; 720) ou A(5;780).
En degré 7, on considère une somme

Paj,bi,Cj ~ a', bj ,c-
i= 1

on pose alors c, cj 0 et on a les quatre relations

S 7 2 / ^ 1 / ^ 3 4 / 3 t/4a,ô,. a, b;et a; 6, ai+lbi+l

ce qui donne finalement l'identité

(b4cAx ± ab5c3y + (b2c4x ± ab3cl0y - (b6x ± ac13)1 - (c8x ± ab8)1

+ 2x1(bA2 + c56 — b28c28 - bI4c28) lAab8 cu {b21 - c21) (c14 — b7)x

dont le premier membre contient 16 puissances septièmes, ce qui est supérieur
à M7) ^ 2M(7) 12.

De même en degré 9, on partira de

3

XI Paj,bj,0 Pa'j,b'j, 0

/ 1

et on obtient par la même méthode (système linéaire de 9 équations à

12 inconnues) une identité dont le premier membre est la somme de 24

puissances 9èmes. Les coefficients aiy a], biy a] sont donnés dans le tableau suivant:

a a' b b'
1

oo

S u6 uw10 UV1W]

2 w6 w8 UUl0W1 uu10

3 u6W8 U8W6 uu1 uw1
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Le coefficient de x de second membre est A ~ 18w8l>8w8(w18 — vl8)Q(v, w)

où Q est le polynôme

Q(x,y) x54 + y54 - x54y54 + x36 + l36 + *18j;18 + *36L18 + ^18L36 •

La longueur de l'identité est 24 ce qui la rend pratiquement inutile.

5. Retour sur le problème de Tarry-Escott

En degré k suffisamment petit, beaucoup d'identités et donc de

majoration de v*(k) proviennent de s-uples (ß\, a5) et dont les

k — 2 premières fonctions symétriques élémentaires coïncident. On écrira

alors suivant une notation classique dans cette question [a\,..., as]k^2

[bi,b2, ...,bs]k-2- La recherche systématique de tels s-uples se fait en

général inductivement, à l'aide des deux opérations suivantes ([4], [6]).

Lemme. Si [au >..,ar]k [bu ...,br]k, alors quel que soit x

1) [au ...,ar,bi +x, b2 + x,br+x]k+l
— \ß\ + x, Ü2 T- x,..ar + x, b\ f b2 • • • br] k + \

2) [ai, ...,ar, ai + x,..., ar + x]k [b\,..., br,b\ + x,..., br + x]*

Naturellement la longueur des 5-uples déduit par le procédé récurrent est

le double des s-uples de départ mais un choix judicieux peut permettre de

réduire cette longueur: en effet chaque fois que l'on a a,- + x aj (resp.

buJtx bv) on pourra supprimer dans l'égalité des deux crochets, les termes

égaux, aussi pour appliquer la règle en question on calcule {<2/ - aj / i > j] et

[bj - bj/ i >j} et on choisit pour x l'un des entiers qui est le plus souvent une
différence de deux a, et de deux bj. Ainsi partant de [0,3]! [1,2]! en

ajoutant 3 puis 5 puis 7, on trouve [0,4,5]2 [1,2,6]2, [0,4,7,11 ]3

[1,2,9,10]3 et [0,4,8,16,17]4 [1,2,10,14,18]4 ce qui montre que
p(k) k y 1 pour k < 4 et que ü*(k) 2(k - 1) pour k < 6. On peut
développer cette technique et s'essayer à trouver de nombreux exemples de

s-uples vérifiant [ai,..., as]h [bx,..., bs\h mais il n'est pas évident de

minimaliser s par rapport à h.

On peut aussi opérer littéralement en partant de [a, b]{ [c,a + b-c]j en
prenant x dans le Z-module libre de base (a, b, c). On prend x b - a d'où
[a, b + c — a, 2b — c]2 [c, a + b — c,2b — a]2\ ensuite on peut prendre
y a - 2b + c d'où
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[b + c - a, 2b - c, a - 2b + 2c, 2a - b]3

[2b - a, a + b - c, 2a - 2b + c, - b + 2c]3

ce qui fournit une famille d'identités

4

Y (* + tf/)5 - (x+ bi)5 Ax + B
i= 1

où A est un polynôme homogène de degré 4. L'identité (3) en est un cas

particulier provenant de [0,3,4,7]3 [1,1,6, 6]3 qu'on peut obtenir à partir
de [0,4, 5]2 [1,2,6]2 en ajoutant 1 (au lieu de 7). L'existence de plusieurs
choix possibles pour x rajoute à la difficulté d'une étude systématique qui pour
l'instant n'a fourni ainsi que des exemples. On trouvera dans [9] des références

bibliographiques ainsi que des majorations explicites pour p(k) et M(k) définis
dans la partie précédente.
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