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(1.16) Dy(®) = Do,n(8) (8=P or y).

In view of (0.14) this implies that

3¢
1 — Dy(Sx — €) = Dy (Sk — —4') ~ Dy (Sk — €)

= Dy(v) — Dy(B) = Do, n(y) — O,h()/L 5 k

[

Remark. 1 studied in [P2] an error term associated with the k-th Jordan
totient function (for k£ > 2), that can be expressed in terms of the function

o H(n) (X
(1.18) g 1= — L — w(—) ;
n=1 N n
where p denotes the Moebius function, and I proved by a direct method that
(1.19) lim inf g¢(x) = — lim sup g (x) .

This can also be obtained by an argument similar to the above proof.

2. THE CASE w(k) = 2

In this section we obtain an estimate more general than (0.10) of
Theorem 2.

THEOREM 2°. Let k =pq where p<gq and p and g are prime
numbers, and let d = q — ps with 1 <d < p — 1 be the remainder of the
Euclidean division of q by p. Then we have

E .1 rd LD -2 -1
k) (p+1) (p+1(g+1) " plq '

The right side of (2.1) is easily seen to exceed k/c (k) for any p and g. And

2.1) Sk 2

1
in the special case where p = 2 it reduces to (q - 5) /(q + 1).

Proof. Let N be a positive integer. We define, modulo pVg?", the integer
x = xy by the system of congruences

x= —1(p")
{ =-d-1(q").

2.2)
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1Wehave, for1<i<Nand1<j<N,

(2.3) x=s;;9) —d— 1(p'q’) where {1

'whence
N (1—p) 1 1 N(l—q) 1 d+1
a3 e £ 28 (<3 0) £ 00 (54 5)
2.4 +(p—1)(q~1)(1_q—d—1)
pq 2 pq
A
1<i,j<N p'q’ 2 p'q’

(4, # 1,1

I The right side of (2.4) tends to the right side of (2.1) as N — oo, and the
theorem is proved in virtue of (0.15). [J

PROOF OF THEOREM 3

Wl

The function f, defined in (0.11) satisfies, provided r > 3

(3.1) Sr (D25 s 00) < fri(D2s ooy Dr1) D2,
and thus the condition
(3.2) Sy r D)) 2 X
Vimplies, for any x, that
. p2{>x v
>x if r=2.

| Also note that, since

(3.4)
| "

we have in fact

(3.5) Hik o = - 3 2 {f} .

N ek

Ly (1+<1—p) y ) ,
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