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n>1 n 2 n
then
k
(0.14) H(k,x) = H(k, [x]) — —— {x} + o(1) ,
c (k)
-~ and
LEMMA 0. We have
(0.15) S, = sup H(k,n).

nelZ

Proof. In view of (0.13), (0.14), and the definition of H(k,Xx), it is
sufficient to show that

(‘O.1~6) limsup H(k,N) = sup H(k,n) .

N—>o NeN nel
When k£ = 1 this is easily verified; when k£ > 2 and N € Z we define for each
positive integer i the positive integer N;:= (| N| + 1)ki + N and we see,
since

Z Yk(m)

(0.17) =0 (> x),

m Y Kom
and since for every divisor m of k’ we have {N;/m} = {N/m}, that

(0.18) lim H(k,N;) = Hk,N) . [l

[ — o

1. PROOF OF THEOREM 1

We first set some terminology. Let g: [1, o] = R be a measurable function,
and consider as in [P1]

1
(1.1) Do(u) = Dy g(u) : = lim . ni{tel0,x], gt) <x},
and
(1.2) Dy(u*) := lim Dy(v), Do(u~):= lim Dy(),

V> U U= U
ve k£ ve E
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where u denotes the Lebesgue measure and E the set of values for which D,
exists. In case D, exists almost everywhere we say, following A. Wintner
[W, p. 537], that g possesses an asymptotic distribution function. If (and only
if) this is so we define an associated function D = D,: R — [0, 1] by

1
(1.3) D(u) : = E(Do(lﬁ) + Do(u 7)) .

And it is this function D we call the asymptotic distribution jfunction
of g. The convention is of course abusive?); we point out however that D,
exists and coincides with D at least wherever D is continuous (which, since D
is a distribution function, is the case almost everywhere).

The first two statements of Theorem 1, D ="D, exists and is continuous,
are proved through a straightforward application of two theorems from [P1].

Indeed, it 1s easy to see that
(1.4) Y () = O((logx)*®) = 0 - x + o(x)

n<x

holds, and that for any function z = z(x) = o (x = o) (and in particular for
a slowly increasing function), we have

(1.5) Hix = ¥ 10 (— w(f)) + o(l),

n<z n n

1
where y(y) denotes the function {y} — Ewhich satisfies

1
- (1.6) j y()dt =0 .
0
In the notation of [P1] the properties (1.4) through (1.6) are expressed by
writing 4 € C,(yx, — v). Thus from Theorem 4 of that paper we have the

existence of D,. And since v is odd almost everywhere Theorem 5 of [P1]
tells us that D, is symmetric.

We pass now to the third assertion of the theorem, namely that
It = — S¢. We denote by S the bounded support of D, and by — s and s its

2) Its purpose is to ensure that D be normalized, i.e. that the relation

1
D(u) = 5 (D@ ™) + D))

hold for every real number u.
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;greatest lower bound and least upper bound: we have I, < —s < s < 5.
fWe show that

(1.7) Li=-s=-5

holds by ensuring that

(1.8) 0<Dy(a) <1 forevery ae(,S).

- We prove here that D, (S — €) < 1 for every € > 0; the rest of the proof is
‘similar. There is an increasing sequence of natural numbers n; with
H(k,n;)) > S, (i— o), and thus we may select some natural number N
satisfying

(1.9 H(k,N) > S; — Z

j and

‘ 1 n €
(110) - Z |Yk()|<_
; 2 n>N n 4
| Hence if we define
| n) (1 M
(1.11) H*(k,N,M) : = ), il (— - {”‘} :
I nEN A 2 7
we have
2
(1.12) H*(k,N,N) > § ~3°
Also, if L is the least common multiple of the integers 1,2, ..., N, then
(1.13) H*(k,N,mL + N) = H*(k,N, N)

- for every integer m, and it follows from (1.12) and (1.10) that
3¢
(1.14) H(k,mL+N)>Sk~Z

for every integer m. Now since D, , exists and coincides with D, almost
. everywhere we can find two numbers § and vy satisfying

| g
- (1.15) Sk—8<B<B+—5-<Y<Sk—Z

. and

i
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(1.16) Dy(®) = Do,n(8) (8=P or y).

In view of (0.14) this implies that

3¢
1 — Dy(Sx — €) = Dy (Sk — —4') ~ Dy (Sk — €)

= Dy(v) — Dy(B) = Do, n(y) — O,h()/L 5 k

[

Remark. 1 studied in [P2] an error term associated with the k-th Jordan
totient function (for k£ > 2), that can be expressed in terms of the function

o H(n) (X
(1.18) g 1= — L — w(—) ;
n=1 N n
where p denotes the Moebius function, and I proved by a direct method that
(1.19) lim inf g¢(x) = — lim sup g (x) .

This can also be obtained by an argument similar to the above proof.

2. THE CASE w(k) = 2

In this section we obtain an estimate more general than (0.10) of
Theorem 2.

THEOREM 2°. Let k =pq where p<gq and p and g are prime
numbers, and let d = q — ps with 1 <d < p — 1 be the remainder of the
Euclidean division of q by p. Then we have

E .1 rd LD -2 -1
k) (p+1) (p+1(g+1) " plq '

The right side of (2.1) is easily seen to exceed k/c (k) for any p and g. And

2.1) Sk 2

1
in the special case where p = 2 it reduces to (q - 5) /(q + 1).

Proof. Let N be a positive integer. We define, modulo pVg?", the integer
x = xy by the system of congruences

x= —1(p")
{ =-d-1(q").

2.2)
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