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ON THE AVERAGE BEHAVIOUR OF THE LARGEST DIVISOR
OF n PRIME TO A FIXED INTEGER k

by Y.-F.S. PÉTERMANN

Résumé. On étudie le comportement de la fonction bornée

hk(x) : x"lEk(x), où Ek{x) : - (k/2o(k))x2 est le terme

irrégulier du comportement asymptotique moyen de &k(n), le plus grand
diviseur de n premier à k (et où l'on peut sans perte supposer que k est sans

facteur carré). On s'intéresse plus particulièrement aux nombres Ik et Sk, les

liminf et lim sup de hk(x) (lorsque x-*oo), dont les valeurs exactes ne sont

connues que si k 1 ou si k est un nombre premier (Joshi et Vaidya [JV]).
En établissant l'existence et la symétrie de la fonction de répartition de hk(n)

(au sens de Wintner), on simplifie le problème en démontrant que Ik - Sk.

Puis, pour tous les k non premiers et sans facteur carré, on améliore
explicitement l'estimation Sk ^ k/o(k) (de Herzog et Maxsein [HM], et

indépendamment Adhikari, Balasubramanian et Sankaranarayanan [ABS]).

0. Introduction and statement of the results

For a fixed natural number k we denote by àk{n) the largest divisor of n

which is prime to k. If k is the squarefree core of k we have 5k(n) — 8K(n),
and we shall assume from now on that k is squarefree. We define the associated

error term

(0.1) £*(*):- I bk{n)--L-
n^x 2O(k)

where o is the sum-of-divisors function. The behaviour of Ek{x) has been

investigated in [Su], [JV], [HM], [ABS], [AB], and very recently in [A]. It is

known that [JV]

(0.2) Ek(x) 0(x)
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and that [JV, HM, ABS] ')

(0.3) Ek(x) Q±(x)

However, the exact values of the lim sup and liminf of Ek{x)/x are
not known, except in the special case where k is a prime p (and of course
when k 1); we have [JV]

m A\ V EpW P rEp(X) P(0.4) lim sup and lim inf
X p + 1 x-ooX /? + 1

Let us from now on use the notation

,n -, c Ek(x)
(0.5) Sk : lim sup and Ik : lim mf

X -* Od X X -* OO X

When the number co(£) of (distinct) prime divisors of k exceeds 1, the best

estimates known so far are on the one hand [HM, ABS]

k k
(0.6) Sk ^ and Ik ^

a(k)a(k)

and on the other hand [A]

(0.7) Sk < C(k) and Ik> - C(k)

where, if k pxp2...pr (Pi <p2< ••• <pr)>

C(k) : — 2r~1 - f 2r_j ^

Pi+ 1 j 2 (Pi + 1) (p2 + 1)... (pj + 1)

The purpose of this note is to improve on the estimates (0.6) for all k with
co{k) ^ 2. As a preliminary we simplify the study of Ek(x)\ in Section 1 we

prove

Theorem 1. The function

Ek{x)
(0.8) h(x) hk(x) : ——

The notation in (0.3) means that there are two unbounded positive sequences {xt} and

ji/"} (/ 1,2,...), and two strictly positive constants C+ and C~ such that the inequalities

Ek{xf) ^ C + xf and Ek(x~) ^ - C~ X~[ hold for each / m 1,2,
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possesses an asymptotic distribution function which is symmetric (and of
bounded support). Moreover we have

(0.9) Ik= ~Sk.

Then we obtain in Section 2 a lower bound for Sk in the case where

k pq (p < q primes) which implies in particular

Theorem 2. For k 2q ^ 6 where q is a prime we have

1

(0.10) LJ_+ «->
q + 1 a(k) 3 (q + 1)

And finally in Section 3 we show

Theorem 3. Let k pxp2...pr, where px < p2 < < pr are
primes and r ^ 2, and let N be the positive integer such that

Jo(k/Pï
tfr(P2,~.,Pr):= —; 1

(0.11)
'

1 *4"
J(0,^-1) (7V=1)

LK-i,K+1- 1) (N 2,3,

Then, except possibly in the case where r 2, p{ 2 and p2 2N - 1,

we have

<0.12,
+1>

g(L) (/?i + 1) \ pf 1

(o )/?f+1- 1,

We shall need the expression

<o.,3) 0,W= E ^ (1 - HU + .a,,
i n \2 [ n J /

where the multiplicative arithmetical function yk is defined by

Y*0'm)
' 1 — p if I

0 otherwise

(see [HM, Theorem 1 and Lemma 1]), the fact that [HM, (4.1)], if we set
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un \ V f ^
H(k,x):= L

n \2

then

13)

(0.14) H(k,x)H(k, [X]) o(l)
a(k)

and

Lemma 0. We have

(0.15) Sk sup H{k,n).
n g Z

Proof. In view of (0.13), (0.14), and the definition of H(k,x), it is

sufficient to show that

(0.16) lim sup H(k, N) sup H(k, n)
N -> oo,/Ve N BgZ

When k 1 this is easily verified; when k ^ 2 and We Z we define for each

positive integer / the positive integer Nt : (| W | + l)/:/ + TV and we see,

since

Jk(m)
(0.17) £ HLJ-o(/-oo),

m fit' W

and since for every divisor m of k' we have {N/m}, that

(0.18) lim H(k,Ni)

1. Proof of Theorem 1

We first set some terminology. Let g:[1,°o] -* R be a measurable function,

and consider as in [PI]

(1.1) D0(u)D0,g(u):=lim -\ie[0,x],g(0
X -» oo X

and

(1.2) D0(u+) :lim D0(v),D0(u~):= lim
U U V U

u e E u e E
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