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ON THE AVERAGE BEHAVIOUR OF THE LARGEST DIVISOR
OF n PRIME TO A FIXED INTEGER &

by Y.-F.S. PETERMANN

RESUME. On étudie le comportement de la fonction bornée
he@):=x"'E(x), ot Eix):= Y, _.8(n) — (k/26(k))x> est le terme
irrégulier du comportement asymptotique moyen de 8,(n), le plus grand
diviseur de n premier a k (et ou ’on peut sans perte supposer que k est sans
facteur carré). On s’intéresse plus particulierement aux nombres I, et Sy, les
lim inf et lim sup de A;(x) (lorsque x — o), dont les valeurs exactes ne sont
connues que si Kk = 1 ou si k£ est un nombre premier (Joshi et Vaidya [JV]).
En établissant I’existence et la symétrie de la fonction de répartition de Ay (n)
(au sens de Wintner), on simplifie le probléme en démontrant que I, = — S;.
Puis, pour tous les k non premiers et sans facteur carré, on améliore expli-
citement ’estimation S, > k/c (k) (de Herzog et Maxsein [HM], et indépen-
damment Adhikari, Balasubramanian et Sankaranarayanan [ABS]).

0. INTRODUCTION AND STATEMENT OF THE RESULTS

For a fixed natural number k we denote by 6,(n) the largest divisor of n
which is prime to k. If x is the squarefree core of k we have &;(n) = d.(n),
and we shall assume from now on that k is squarefree. We define the associated
error term

0.1) E(x):= ) 8@ - x2,

26 (k)

where ¢ is the sum-of-divisors function. The behaviour of E,(x) has been
investigated in [Su], [JV], [HM], [ABS], [AB], and very recently in [A]. It is
known that [JV]

0.2) Ei(x) = O(x)
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and that [TV, HM, ABS]!)
- (0.3) E(x) = Q. () .

| However, the exact values of the limsup and liminf of E,(x)/x are
not known, except in the special case where k is a prime p (and of course
when k£ = 1); we have [JV]

E,(x) p

E,(x
(0.4) lim sup ) . and liminf = - —,
’ X = o X p+ 1 X = o X p+ 1

Let us from now on use the notation

E E (x
(0.5) Sy : = lim sup ) and I, := liminf ) .

X = o x X — oo x

When the number w(k) of (distinct) prime divisors of k exceeds 1, the best
estimates known so far are on the one hand [HM, ABS]

(0.6) Si = L and [, < — —5— ,
o (k) o (k)

and on the other hand [A]

(0.7) S« <Ck) and I, > —Ck)

where, if Kk = pipy...p, (D1 <pr < ... <p,),

Pr 5o _ 4 DDy - Dj-1 .y

p+ 1 j=2 i+ D)+ 1) ... (pi+1)

Clk):=

The purpose of this note is to improve on the estimates (0.6) for all k£ with
w(k) > 2. As a preliminary we simplify the study of E,(x); in Section 1 we
prove

THEOREM 1. The function

Ei(x)

(0.8) h(x) = he(x): =

1Y The notation in (0.3) means that there are two unbounded positive sequences {x; } and
A{x7} (= 1,2,...), and two strictly positive constants C* and C ~, such that the inequalities
| Ex(xf) > C*x} and Ex(xj) < — C~X; hold for each i = 1,2, ....
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possesses an asymptotic distribution function which is symmetric (and of
bounded support). Moreover we have
(09) [k = — Sk .

Then we obtain in Section 2 a lower bound for S, in the case where
k = pq (p < q primes) which implies in particular

THEOREM 2. For k=2q >6 where q is a prime we have
1
q —_——_—

3 k qg—1
(0.10) Sy = = + .
qg+1 ok) 3(g+1

And finally in Section 3 we show

THEOREM 3. Let k=pp,...p,, where p<p,<..<p, are
primes and r > 2, and let N be the positive integer such that

[ (D2 ees D) 1= (G/g/c/pl - 1) B
(0.11) 2 4
. 0, p;—1) (N=1)
[pY —1,pM ' - 1) (N=2,3,..).

Then, except possibly in the case where r=2,p, =2 and p, =2V —1
we have

b

(V-1
s(k) pY '(pi+1)

S = — (1911V - 1)
(0.12)

k 1 1 1
> + (1 Nt N+1 ) :
(k) (pi+1) P (o(k/py) — k/p)pY ' -1

We shall need the expression

n) (1 X
(0.13) he(x) = Y V() (— — {—}) + o(1),
nzl N 2 n
where the multiplicative arithmetical function Y« 1s defined by
1-p if plk,
Yi(p™) = {
‘ 0 otherwise

(see [HM, Theorem 1 and Lemma 1]), the fact that [HM, (4.1)], if we set
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w520 )

n>1 n 2 n
then
k
(0.14) H(k,x) = H(k, [x]) — —— {x} + o(1) ,
c (k)
-~ and
LEMMA 0. We have
(0.15) S, = sup H(k,n).

nelZ

Proof. In view of (0.13), (0.14), and the definition of H(k,Xx), it is
sufficient to show that

(‘O.1~6) limsup H(k,N) = sup H(k,n) .

N—>o NeN nel
When k£ = 1 this is easily verified; when k£ > 2 and N € Z we define for each
positive integer i the positive integer N;:= (| N| + 1)ki + N and we see,
since

Z Yk(m)

(0.17) =0 (> x),

m Y Kom
and since for every divisor m of k’ we have {N;/m} = {N/m}, that

(0.18) lim H(k,N;) = Hk,N) . [l

[ — o

1. PROOF OF THEOREM 1

We first set some terminology. Let g: [1, o] = R be a measurable function,
and consider as in [P1]

1
(1.1) Do(u) = Dy g(u) : = lim . ni{tel0,x], gt) <x},
and
(1.2) Dy(u*) := lim Dy(v), Do(u~):= lim Dy(),

V> U U= U
ve k£ ve E
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where u denotes the Lebesgue measure and E the set of values for which D,
exists. In case D, exists almost everywhere we say, following A. Wintner
[W, p. 537], that g possesses an asymptotic distribution function. If (and only
if) this is so we define an associated function D = D,: R — [0, 1] by

1
(1.3) D(u) : = E(Do(lﬁ) + Do(u 7)) .

And it is this function D we call the asymptotic distribution jfunction
of g. The convention is of course abusive?); we point out however that D,
exists and coincides with D at least wherever D is continuous (which, since D
is a distribution function, is the case almost everywhere).

The first two statements of Theorem 1, D ="D, exists and is continuous,
are proved through a straightforward application of two theorems from [P1].

Indeed, it 1s easy to see that
(1.4) Y () = O((logx)*®) = 0 - x + o(x)

n<x

holds, and that for any function z = z(x) = o (x = o) (and in particular for
a slowly increasing function), we have

(1.5) Hix = ¥ 10 (— w(f)) + o(l),

n<z n n

1
where y(y) denotes the function {y} — Ewhich satisfies

1
- (1.6) j y()dt =0 .
0
In the notation of [P1] the properties (1.4) through (1.6) are expressed by
writing 4 € C,(yx, — v). Thus from Theorem 4 of that paper we have the

existence of D,. And since v is odd almost everywhere Theorem 5 of [P1]
tells us that D, is symmetric.

We pass now to the third assertion of the theorem, namely that
It = — S¢. We denote by S the bounded support of D, and by — s and s its

2) Its purpose is to ensure that D be normalized, i.e. that the relation

1
D(u) = 5 (D@ ™) + D))

hold for every real number u.
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;greatest lower bound and least upper bound: we have I, < —s < s < 5.
fWe show that

(1.7) Li=-s=-5

holds by ensuring that

(1.8) 0<Dy(a) <1 forevery ae(,S).

- We prove here that D, (S — €) < 1 for every € > 0; the rest of the proof is
‘similar. There is an increasing sequence of natural numbers n; with
H(k,n;)) > S, (i— o), and thus we may select some natural number N
satisfying

(1.9 H(k,N) > S; — Z

j and

‘ 1 n €
(110) - Z |Yk()|<_
; 2 n>N n 4
| Hence if we define
| n) (1 M
(1.11) H*(k,N,M) : = ), il (— - {”‘} :
I nEN A 2 7
we have
2
(1.12) H*(k,N,N) > § ~3°
Also, if L is the least common multiple of the integers 1,2, ..., N, then
(1.13) H*(k,N,mL + N) = H*(k,N, N)

- for every integer m, and it follows from (1.12) and (1.10) that
3¢
(1.14) H(k,mL+N)>Sk~Z

for every integer m. Now since D, , exists and coincides with D, almost
. everywhere we can find two numbers § and vy satisfying

| g
- (1.15) Sk—8<B<B+—5-<Y<Sk—Z

. and

i
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(1.16) Dy(®) = Do,n(8) (8=P or y).

In view of (0.14) this implies that

3¢
1 — Dy(Sx — €) = Dy (Sk — —4') ~ Dy (Sk — €)

= Dy(v) — Dy(B) = Do, n(y) — O,h()/L 5 k

[

Remark. 1 studied in [P2] an error term associated with the k-th Jordan
totient function (for k£ > 2), that can be expressed in terms of the function

o H(n) (X
(1.18) g 1= — L — w(—) ;
n=1 N n
where p denotes the Moebius function, and I proved by a direct method that
(1.19) lim inf g¢(x) = — lim sup g (x) .

This can also be obtained by an argument similar to the above proof.

2. THE CASE w(k) = 2

In this section we obtain an estimate more general than (0.10) of
Theorem 2.

THEOREM 2°. Let k =pq where p<gq and p and g are prime
numbers, and let d = q — ps with 1 <d < p — 1 be the remainder of the
Euclidean division of q by p. Then we have

E .1 rd LD -2 -1
k) (p+1) (p+1(g+1) " plq '

The right side of (2.1) is easily seen to exceed k/c (k) for any p and g. And

2.1) Sk 2

1
in the special case where p = 2 it reduces to (q - 5) /(q + 1).

Proof. Let N be a positive integer. We define, modulo pVg?", the integer
x = xy by the system of congruences

x= —1(p")
{ =-d-1(q").

2.2)
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1Wehave, for1<i<Nand1<j<N,

(2.3) x=s;;9) —d— 1(p'q’) where {1

'whence
N (1—p) 1 1 N(l—q) 1 d+1
a3 e £ 28 (<3 0) £ 00 (54 5)
2.4 +(p—1)(q~1)(1_q—d—1)
pq 2 pq
A
1<i,j<N p'q’ 2 p'q’

(4, # 1,1

I The right side of (2.4) tends to the right side of (2.1) as N — oo, and the
theorem is proved in virtue of (0.15). [J

PROOF OF THEOREM 3

Wl

The function f, defined in (0.11) satisfies, provided r > 3

(3.1) Sr (D25 s 00) < fri(D2s ooy Dr1) D2,
and thus the condition
(3.2) Sy r D)) 2 X
Vimplies, for any x, that
. p2{>x v
>x if r=2.

| Also note that, since

(3.4)
| "

we have in fact

(3.5) Hik o = - 3 2 {f} .

N ek

Ly (1+<1—p) y ) ,
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After these preliminaries let N > 1 be as in (0.11), and define
(3.6) x=xy:=pN—-1,
where we denote p, simply by p. For r > 3 (3.2) and (3.3) imply that
(3.7) D> X,

and (3.7) clearly remains true for r = 2 if p # 2. Hence

L ek, pitilal. Ye(n)
e == (pp +pp“ T +pp2N—2 ) - (-1 ‘;N ;2
(=1 "' - 1) V()
= - ~ 1
ey R
(3.8) !
(1-ph
= (" -1 ~ MM {t+a-
v )((p+ Dph! pIIIk ( i p),;p ) )

—(N—l)( pN+1 k)
- @+ Dp1 o))

Now when a rational number P/Q is less than an integer M, we may
conclude that M — P/Q > 1/Q. Thus from (0.11) we have

(3.9 p_ ok ok/p) _ pN'—(ctk/p)—k/p)”!
' p+1  k k/p pN+1—1—(cs(k/p) k/p)-1~

whence from (3.8)

(3.10) H(k,x) =

+ (1 + : 1 ) .
olk) (»p+1) (o(k/p) — k/p)pN+1—1 pN-1

On appealing to Lemma 0 this concludes the proof of the theorem. []

~ Last Remark. Neither of the estimates (2.1) (of Theorem 2’) and (0.12)
(of Theorem 3) is better than the other in all cases considered by both
theorems. For instance in the case where k = pg = p(p + d) with p and ¢ odd

primes and 2 < d < p — 2, there is some positive number € depending on p,
satisfying

13/4 8.06
(3.11) —_— < e < —

Vp Vo
and such that (2.1) is better than (the first estimate of) (0.12) if d < 2}/p
+ 2 + ¢, and is not as good if d > 2})/p + 2 + «.
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. ADDED IN PROOF. Recently, S. D. Adhikari and K. Soundararajan gave a much
simpler proof of (0.9) than mine in ‘“Towards the exact nature of a certain error
term, II”’ (preprint).

[A]
[AB]

[ABS]

[HM]

(V]
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