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QUADRATIC FORMS 201

At this point we simply count lattice points directly and construct the

—1
P for all primes p < 100 except

table below. The table shows P(\/;)) >

p = 5. This completes the proof of Theorem 1.7 and hence the Main
Theorem has been proved completely.

Range of primes

p P(\/E) where P(\/;)) > P 1 !
59 27 59<p <97
31 15 31 <p <353
19 9 19<p <29
11 5 11<p<g17
7 3 p =7
3 1 p=3
5 1 pe2—1
* 4

§ 3. (CONSEQUENCES OF THE MAIN THEOREM

In this section we derive some consequences of the Main Theorem that
have applications to the algebraic theory of quadratic forms. The results in this
section are well known ([La], Chapter 6). The point is that we have new
and more elementary proofs.

Let {{a, b, c>) denote the 3-fold Pfister form

Qyay @ L,by @ {1,¢c) = <1,a,b,c,ab, ac, bc, abc) .

3.1. PRrOPOSITION. Let a,b,ceQ*. Then <{{a,b,c)) is hyperbolic
over Q ifand only if a,b,c are not all positive.

Proof. 1f X{a, b, c)) is hyperbolic, then consideration of {(<{a, b, ¢>> over
the field of real numbers shows at least one of a, b, ¢ is negative.

Now suppose a < 0. Then the Main Theorem implies — ¢ € Dy({<a, b))
and (<a, b)) L {c) is isotropic over Q by Lemma 12(b). A theorem of
Pfister ([La], p. 279] implies (<a, b, ¢)» is hyperbolic over Q.
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3.2. PRrROPOSITION. Let a,b,ceQ”,a,b,c > 0. Then

a,b,cy) = KL L 1)) = &1).
Proof. Calculating in the Witt ring W F we have

a, b, 1)) L(=1)a,b,cy) = a, b)) (K1, 1) L (=1)<1,¢))
= {a, b)) {1, —c) = {a, b, —c)) = 0 by Proposition 3.1.

Therefore {{a, b, 1>> = {({a, b, ¢)). Repeating the same calculation with a, b
in place of ¢ yields the result.

3.3. CoOROLLARY. Let a,b,ceQ” andlet H = {1, —1>. Then

KL 1L, 1)) ifabc>0
4H otherwise .

Ka, b, c)) = {

3.4. THEOREM. I°Q is torsion-free.

Proof. Corollary 3.3 shows that the only nonzero 3-fold Pfister form
in I°Q is ({1, 1, 1>>. Therefore I°Q = Z and I°Q is torsion-free.
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