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QUADRATIC FORMS 201

At this point we simply count lattice points directly and construct the

I
table below. The table shows P(sfp) > —-— for all primes p < 100 except

p — 5. This completes the proof of Theorem 1.7 and hence the Main
Theorem has been proved completely.

Range of primes

P P(y/p) where P(^/p) > V——

59 27 59 < p ^ 97

31 15 31 ^ p ^ 53

19 9 19 ^ p ^ 29

11 5 11 ^ p ^ 17

7 3 P 7

3 1 p 3

5 1 1
5 ~ 1^ 4

§ 3. Consequences of the Main Theorem

In this section we derive some consequences of the Main Theorem that
have applications to the algebraic theory of quadratic forms. The results in this
section are well known ([La], Chapter 6). The point is that we have new
and more elementary proofs.

Let <<a, b, c>> denote the 3-fold Pfister form

<1, a) ® <1, by ® <1, c) — <1, a, b, c, ab, ac, be, abc)

3.1. Proposition. Let a,b,ce Qx. Then «a, b, c>> is hyperbolic
over Q if and only if a, b, c are not all positive.

Proof If \(a, b, c>> is hyperbolic, then consideration of «a, b, c>> over
the field of real numbers shows at least one of a, b, c is negative.

Now suppose a < 0. Then the Main Theorem implies —ce DQ«<a, b>>)
and <<a, h>> 1 <c> is isotropic over Q by Lemma 1.2(b). A theorem of
Pfister ([La], p. 279] implies <<a, b, c» is hyperbolic over Q.
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3.2. Proposition. Let a,b,ceQx,a,b,c> 0. Then

«a,6,c» «1, 1,1» 8<1>

Proof. Calculating in the Witt ring WF we have

«a, b, 1» 1 (-1) «a, b, c» «a, fe» «1, 1> 1 (-1) <1, c>)

<<a, h>> <1, —c) <<a, b, — c>> 0 by Proposition 3.1.

Therefore <<a,b, 1)) b, c». Repeating the same calculation with a, b

in place of c yields the result.

3.3. Corollary. Let a,b,ce Qx and let H <1, —1>. T/zen

7/ f«l,l,l>> if a, b,c>0«a,b,c» -|4H Mliemjse

3.4. Theorem. IsQ is torsion-free.

Proof. Corollary 3.3 shows that the only nonzero 3-fold Pfister form
in I3Q is <<1, 1, 1)). Therefore I3Q Z and I3Q is torsion-free.
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