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196 D. B. LEEP

The proof of Theorem 1.7 is given in the next section. Although we
need Theorem 1.7 only when p = 3 mod 4 we give a complete proof since
very little additional work is required.

§2. THE PROOF OF THEOREM 1.7

In this section p denotes an odd prime number. We begin by recalling
a result about sequences of quadratic residues and nonresidues mod p.

2.1. LeEMMA. The number of pairs (n,n+1) in the set {1,2,..,p — 1}

—1
p p— —_—
such that <ﬁ> =1, (i> = — 1 is equal to P/
b

P 4

Proof. This elementary result is proved completely in [Ha], p. 157-158.
(See also [An], Chapter 10.)

The next two lemmas give a way to count the number of lattice points
(x,y)eZ x Z,x,y > 0, satisfying the conditions of Theorem 1.7.

Let

F(x)={(,B)eZ x Z|o, B> 0,0% + B* < x?}

and let 2(x) = {(o, B) e L (x)] (o, B) = 1}. Let S(x) = | #(x)| and P(x)
= | 2(x)|. (It will be clear from context whether we mean the point
(o, B) or the greatest common divisor of «, f3.)

2.2. LeEMMA. Let R be the set of nonzero squares mod p.
2

(a) The function 9:.@(\/;) — R given by 0(x,y) = 3%modp is an
X

injection.

1
() P(/p) <5 (0—1)

1
Proof. Clearly (a) implies (b) since | R | = 5 (p—1). If (a) is false then there

Y

exist two distinct points (x,, y4), (x5, y,) in 9(\/1-9) such that — = =3
X1 X2

| Then yix3 — x1y3 = (¥1X2+x1¥3) (V1% —X1),) = 0 mod p. We have y;x,
| )

. + x,y, # 0 since x;, y; > 0 and y;x, — xyy, # 0 otherwise 122 and
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then the points (x,, ¥;), (x5, y,) would be equal since (x;,y;) = 1, i = 1, 2.
We have

(X1+y 1) (xz'f‘J’z) (x1x2+J’1J72) + (Y1 x,— 361)”2)2
= (X1 X3 —Y1V2)* + (1x3+%112) .

Either (y,x,—xX,y,)? or (y;x,+x,y,)* is > p? since both are nonzero and
one of them is divisible by p?. Therefore (x2+y?%) (x3+y3) = p* and then
either x2 + y2 > p or x5 + y3 > p. This is a contradiction since both

(x1, 1) and (x,, y,) lie in ﬂ(ﬁ),
Remark. Although (b) in the preceeding lemma is not needed in what
follows it was included since it gives a fairly good upper bound for

P(\/E) that is valid for all primes. It can be shown using Lemmas 2.4, 2.5

P 3
below (see also [HW], p. 268) that lim WP _ 3 477 1t is unusual

pow D 2T
to obtain, with so little work, such a good estimate that is valid for all
prime numbers.

b
2.3. LEMMA. Assume (_‘E) = (—) =1. Let 1:R—-{0,1, — 1}  where

b 2
() = <u> Then r‘l(——l)l _
p 4
b
. 14+-z*
Proof.  Since (—) = 1, we have 1(z%) = — 1 < ¢ = — 1. Since
p p
b/a : , b
—p— = 1, by Lemma 2.1 this happens if and only if — z? is one of the
a

—1
T (7) B B+1
————— elements B in R such that (—) = ], ( T > — 1. Therefore,

4 D p
—1
p— 7
there are exactly — elements z* in R such that t(z%) = — 1.
2
X a—+ b Xi
, X ax*+ by?
Since ’T = — ]l T = — 1 when p t x, it follows

from Lemmas 2.2, 2.3 that proving Theorem 1.7 is equivalent to finding (x, y)
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e #(,/p) such that to 0(x, y) = — 1. This is equivalent to showing 0(%(/p))
—1
p— _E_
Nt Y(—1) is nonempty. Since 0 is injective, |t (—1)| = —
—1
— 1 . —p— p—1
and |R| = pT’ it is sufficient to show P(\/E) + 1 > 5

Thus to prove Theorem 1.7, we are reduced to showing

(-1) P=3 it p=3mod4
p—|— 4
<

p—1 p)
P(\/p) > =

1
P ifp=1mod4.

4
P(/p)

~ .477. Thus it is clear that for all

As pointed out earlier, lim
p~>o P

P/p) 1 . p—1
> —,1e., P >

» 1 /p) y
we need to check this result for all primes p, p # 5, it is necessary to give
rather careful estimates. We now compute P(x) and compare it to
x? —1

4

 but finitely many primes p we have . Since

4
Let p be the Mobius function: If ne Z,n = [] p§, then
i=1

1 ifn =1
wn) =4 (—1)y ifeache =1
0 if some e; > 1.

Let [ ] denote the greatest integer function.
L)

- 24. LemMA. P(x) = i u(i)s<>%> = _Z u(i) S(?) F

Proof. Since S(\/E) = 0, we have S (£> =01ifi> [*\/x_{l + 1. In order
! 2
;to count how many times each lattice point is counted in the sum

> ou )S(i) we partition the lattice points in &(x) into the rays passing
P =1 l

%through the origin. Let (a, B) € #(x) and consider all multiples (mo, mp)

——F 2N
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that lie in %(x). Let n be the unique positive integer such that (no, np) € &(x)
but ((n+ 1), (n+ 1)B) ¢ L(x). Then for a given positive integer i, we have

. n X
(jo, jB) € & (ZC—) precisely for [2} values of j since 1f ([?] + 1> (o, B e & (7)
1
then z<[2}+ 1) (o, B) € F(x). But z<[ﬁ}+ 1) > n + 1. Therefore exactly
i I

X :
[E} points on the ray through (o, B) lie in & <T> It follows that in the
i

sum to be evaluated, the points on the ray through (o, ) contribute

i w(i) F} = 1. To prove this last equality we start with the well known fact
i=1 l

5 1) = {1 ifm=1 . _ S Y ul) = Z u(i)[f} since [ﬂ is

0 ifm> 1. m=1 i[m l
the number of multiples of i that are < n. Therefore the sum to be
evaluated counts the number of points in 2(x) and this completes the proof.

T T
2.5. LemMA. Forall x > I,sz —2x + 1 < 8(x) < sz.

Proof. To each point (a, B) € ¥(x) associate the lattice square for which
(o, B) 1s the lower left corner. Let M, denote the region covered by these
squares. Then S(x) = area of M,. Let M,, M5 be the two strips of length x,
width 1, parallel to the axes where M, = {(x;,y,)|0 < x; < x,0 < y, < 1},
and M; = {(x;,)10<x; <1,0<y, <x}. When x > 1, these strips
cover a combined area of 2x — 1. Since the quarter circle of radius x

is contained in M, U M, U M, it follows %xz < S() + 2x — 1.

Now to each point (a, B) in &(x) associate the lattice square for which
(o, B) is the upper right cornmer. These lattice squares lic entirely in the

first quadrant and inside the circle of radius x. Therefore S(x) < %xz.

26. LEMMA. Let m >n > 1,mneZ. Then

1 1 1 1 1

T
) 2 T S T

m

: 1
Proof. Apply the integral test to j =z dt or observe

n
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We now use Lemmas 2.4, 2.5 to estimate P(x). We need to determine

¥ —~1

. First assume x > 10. Then x > 7

/2

values of x for which P(x) >

50 [—\xﬁ] > 7.

. b
PL) = 3. uli)S G) SNTOR (3:—)

i=1

o) o) o) o) 3

T T /x\? w/x\? w/x\?
S{ox2—2x+1)—=(Z) —Z(Z) —Z(=
() -30G) -56) 56
() (B er) el 4
4 \6 6 g7\ T [x]z
J2
T, 111 1 1 1 1
- ————— —t———a4 ==\ 2x| 14+—] + 2 (by Lemma 2.6
~ 4" 49 25736 6+[x] " 7% (by )
J2
T, 46 T 5 1 7
e (2N e N L 2
4x(100>+4x [x} 3 X
J2
23 2 7 . 2
>ﬁx2+<\/4‘n_§>x+2,smce > 2\/§x.’

Al

2 7 2 ]
Let f(x) = 2—3Ex2 + (Jn — —)x + 2, 9(x) = al 1 . One can check

200 4 3
that f(10) > ¢(10), f(10) > ¢'(10), f"(10) > ¢"(10). Therefore P(x) > f(x)
p—1

if > 10, 1e,
3 1 p 1.e

> g(x) for all x > 10. This implies P(/p) >

p—1

p > 100. It remains to show P(,/p) > if p < 100, p # 5.
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At this point we simply count lattice points directly and construct the

—1
P for all primes p < 100 except

table below. The table shows P(\/;)) >

p = 5. This completes the proof of Theorem 1.7 and hence the Main
Theorem has been proved completely.

Range of primes

p P(\/E) where P(\/;)) > P 1 !
59 27 59<p <97
31 15 31 <p <353
19 9 19<p <29
11 5 11<p<g17
7 3 p =7
3 1 p=3
5 1 pe2—1
* 4

§ 3. (CONSEQUENCES OF THE MAIN THEOREM

In this section we derive some consequences of the Main Theorem that
have applications to the algebraic theory of quadratic forms. The results in this
section are well known ([La], Chapter 6). The point is that we have new
and more elementary proofs.

Let {{a, b, c>) denote the 3-fold Pfister form

Qyay @ L,by @ {1,¢c) = <1,a,b,c,ab, ac, bc, abc) .

3.1. PRrOPOSITION. Let a,b,ceQ*. Then <{{a,b,c)) is hyperbolic
over Q ifand only if a,b,c are not all positive.

Proof. 1f X{a, b, c)) is hyperbolic, then consideration of {(<{a, b, ¢>> over
the field of real numbers shows at least one of a, b, ¢ is negative.

Now suppose a < 0. Then the Main Theorem implies — ¢ € Dy({<a, b))
and (<a, b)) L {c) is isotropic over Q by Lemma 12(b). A theorem of
Pfister ([La], p. 279] implies (<a, b, ¢)» is hyperbolic over Q.
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