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196 D. B. LEEP

The proof of Theorem 1.7 is given in the next section. Although we
need Theorem 1.7 only when p 3 mod 4 we give a complete proof since

very little additional work is required.

§ 2. The proof of Theorem 1.7

In this section p denotes an odd prime number. We begin by recalling
a result about sequences of quadratic residues and nonresidues mod p.

2.1. Lemma. The number of pairs (n,n +1) in the set {1, 2,..., p — 1}

i i fn\ 1 (n+1\ 1 • i

P

\ P J
such that — 1, — 1 is equal to —.\pj \ p J 4

Proof This elementary result is proved completely in [Ha], p. 157-158.

(See also [An], Chapter 10.)

The next two lemmas give a way to count the number of lattice points
(x, y) e Z x Z, x, y > 0, satisfying the conditions of Theorem 1.7.

Let

$f{x) {(a, ß) g Z x Z I a, ß > 0, a2 + ß2 < x2}

and let ^(x) {(a, ß) e 3P{x) | (a, ß) 1}. Let S(x) | 6P{x) | and P(x)
I TP(x) I. (It will be clear from context whether we mean the point

(a, ß) or the greatest common divisor of a, ß.)

2.2. Lemma. Let R be the set of nonzero squares mod p.

(a) The function 0 \0>fJp)-^R qiven by 9(x, y) ^ mod p is an

injection.

(b) pufp) <l(p-i).

Proof Clearly (a) implies (b) since | R | ^ (p— 1). If (a) is false then there

r y i y 2exist two distinct points (x1, y J, (x2, y2) in PP(Jp) such that —j —r mod p.
x J x J

Then y\x\ - xfy\(yiX2 + x1y2){yxx2-x1y2) 0 mod p. We have

y i k2
+ xxy2 A 0 since xi9 yt > 0 and yLx2 — xxy2 A 0 otherwise — — and

x1 x2
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then the points (x1, yJ, (x2, y2) would be equal since — 1, i — 1, 2.

We have

(x J+ }'?)(*!+y I) (x1x2 + y+ (y1x2-x1y2)2

(x1x2-y1y2)2 + (y1x2 + x1y2)2.

Either (y1x2-x1y2)2 or (y1x2 + x1y2)2 is ^ p2 since both are nonzero and

one of them is divisible by p2. Therefore (x \ + y \) {x 2 + y 2) ^ p2 and then

either x\ + y \ ^ p or x\ + yj > p. This is a contradiction since both

(xi > ki) and (x2, y2) he in
Remark. Although (b) in the preceeding lemma is not needed in what

follows it was included since it gives a fairly good upper bound for

P{y/p) that is valid for all primes. It can be shown using Lemmas 2.4, 2.5

below (see also [HW], p. 268) that lim JL ~ 477 it is unusual
p-*- 00 P 271

to obtain, with so little work, such a good estimate that is valid for all
prime numbers.

2.3. Lemma. Assume I — J I — J 1. Let x : jR — {0, 1, — 1} where

fa + bz2\
Then

V P

Tx(z2)

Proof. Since ] 1, we have x(z2) — 1

h / a

P

l+b-z2
a

— — 1. Since

1, by Lemma 2.1 this happens if and only if - z2 is one of the
a

-V
elements ß in R such that - I 1, J — 1. Therefore,

ß+1

there are exactly

a-h b-

Since
* - 1

P

elements z2 in R such that t(z2) — 1.

'ax2 + by2^

- 1 when p Jf x, it follows

from Lemmas 2.2, 2.3 that proving Theorem 1.7 is equivalent to finding (x, y)
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such that t o 0(x5 y) — 1. This is equivalent to showing 0(^C\/p))
-1N

P
P ~

nx x(— 1) is nonempty. Since 0 is injective, |x 1(— 1) |

P- 1
P -

it is sufficient to show P(y/p) +

1

and I R \

^ „ - w r/ 4

Thus to prove Theorem 1.7, we are reduced to showing

P ~ 3

>

4

p - 1

P ~
>

-1
4

P~ 1

if p 3 mod 4

if p EE 1 mod 4

As pointed out earlier, lim « .477. Thus it is clear that for all
co P

but finitely many primes p we have > —, i.e., PL/p) > Since
p 4 v 4

we need to check this result for all primes p, p # 5, it is necessary to give
rather careful estimates. We now compute P(x) and compare it to
x2 - 1

Let ja be the Möbius function: If n e Z, « ]^[ pp, then
i i

il
if n 1

— I/ if each et — 1

0 if some > 1

Let [ ] denote the greatest integer function.

00 /x\ I x
2.4. Lemma. P(x) p(z)Sl — £ p(i)S -

Proof. Since 5(^/2) 0, we have S
* 0 if i ^ LA

+ 1. In order

to count how many times each lattice point is counted in the sum
OO / -jA
£ p(ï)5(— J we partition the lattice points in SP(x) into the rays passing

through the origin. Let (a, ß) g and consider all multiples (ma, mß)
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that lie in Sf{x). Let n be the unique positive integer such that (na, wß) e SP(x)

but ((n+l)a,(n+l)ß)£«9%>c). Then for a given positive integer i, we have

(jajß) e SP precisely for values of j since if + 1 (o, ß)e<P

then i + 1 (a, ß) g SP{x). But i
n +1)—
i

+1 I ^ n + 1. Therefore exactly

points on the ray through (a, ß) lie in SP — It follows that in the

sum to be evaluated, the points on the ray through (a, ß) contribute

n

i
X KO

i 1

1. To prove this last equality we start with the well known fact

I KO {! iîm " Î Then 1 - I I KO KO
i\m ^ if Wl > L m= 1 i\m i 1

n n
since —

i i
IS

the number of multiples of i that are ^ n. Therefore the sum to be

evaluated counts the number of points in <P(x) and this completes the proof.

2.5. Lemma. For all x ^ 1, — x
4

2
— 2x + 1 < S(x) < — x2.

Proof. To each point (a, ß) e SP(x) associate the lattice square for which
(a, ß) is the lower left corner. Let denote the region covered by these

squares. Then S(x) area of M1. Let M2, M3 be the two strips of length x,
width 1, parallel to the axes where M2 {(x:x, yf) | 0 ^ x1 ^ x, 0 ^ y1 ^ 1},
and M3 {(xl, y J | 0 ^ xx ^ 1, 0 ^ jq ^ x}. When x ^ 1, these strips
cover a combined area of 2x — 1. Since the quarter circle of radius x

is contained in M1 u M2 u M3, it follows — x2 < S{x) + 2x — 1.

Now to each point (a, ß) in SP{x) associate the lattice square for which
(a, ß) is the upper right corner. These lattice squares lie entirely in the

71 „first quadrant and inside the circle of radius x. Therefore S{x) < - xL

2.6. Lemma. Let m > n ^ 1, m, ne Z. Then

1 1

(n+l)2 (n + 2)2

1 1 1

+ ...+ — <
n m

iProof Apply the integral test to j — dt or observe
n l>

m- 1 1

Ii=n (i + 1)
V 1 i

2 < E T-ri i T 1

1

_
1

n m
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We now use Lemmas 2.4, 2.5 to estimate P(x). We need to determine

values of x for which P(x) >

x

x2 — 1 X
First assume x > 10. Then —— > 7

4 ^2
SO

V5.
^ 7.

H
POO S 0(05 - X o(05 -

M

> — x2 — 2x +1
4 \2 4 \3 4 \5

i — 7 V I

2

>
23TI

200
x2 +

\/2Ä 7\ x-
— x + 2, since Jlx

23n 7Let f(x) — x +Jy J
200 - — x x + 2, #(x) =3

3

x2 — 1

One can check

that /( 10) > gr(10), /'(10) > ^'(10), /"(10) > ^"(lO). Therefore P{x) > f{x)

> g(x) for all x > 10. This implies P(y/p) > p- 1

if ^Jp > 10, i.e.,

p > 100. It remains to show P{y/p) >
P - 1

•if p < 100, p / 5.
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At this point we simply count lattice points directly and construct the

I
table below. The table shows P(sfp) > —-— for all primes p < 100 except

p — 5. This completes the proof of Theorem 1.7 and hence the Main
Theorem has been proved completely.

Range of primes

P P(y/p) where P(^/p) > V——

59 27 59 < p ^ 97

31 15 31 ^ p ^ 53

19 9 19 ^ p ^ 29

11 5 11 ^ p ^ 17

7 3 P 7

3 1 p 3

5 1 1
5 ~ 1^ 4

§ 3. Consequences of the Main Theorem

In this section we derive some consequences of the Main Theorem that
have applications to the algebraic theory of quadratic forms. The results in this
section are well known ([La], Chapter 6). The point is that we have new
and more elementary proofs.

Let <<a, b, c>> denote the 3-fold Pfister form

<1, a) ® <1, by ® <1, c) — <1, a, b, c, ab, ac, be, abc)

3.1. Proposition. Let a,b,ce Qx. Then «a, b, c>> is hyperbolic
over Q if and only if a, b, c are not all positive.

Proof If \(a, b, c>> is hyperbolic, then consideration of «a, b, c>> over
the field of real numbers shows at least one of a, b, c is negative.

Now suppose a < 0. Then the Main Theorem implies —ce DQ«<a, b>>)
and <<a, h>> 1 <c> is isotropic over Q by Lemma 1.2(b). A theorem of
Pfister ([La], p. 279] implies <<a, b, c» is hyperbolic over Q.
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