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192 D. B. LEEP

the classical integral theory of quadratic forms over the integers and also
depends on Dirichlet’s theorem or Gauss’ theory mentioned above. A third
way 1s to use the so called weak Hasse-Minkowski theorem. A proof of
this can be found in [La], p. 174-178, but knowledge is required of Witt
rings, local fields, exact sequences, and Springer’s theory for quadratic forms
over local fields.

Until now, no proof of the Main Theorem, much less an elementary one,
has appeared exploiting the fact that Dg(<1, a, b, ab)) is a multiplicative
subgroup of Q™. We present a truly elementary proof below using nothing
more exotic than the notion of quadratic residues and the Mobius function.

We follow basic terminology and notation as found in [La]. In particular,
a quadratic form {a,, .., a,y is isotropic over F if there exist x,, .., x, € F,

not all zero, such that ) a;x? = 0. We have the orthogonal sum
i=1

{ay, oy @py L by, .ub,y = <ay,...a,,b,,.., b,y and {{a, b)) stands for
{1, a, b, ab>. '

I wish to thank T.Y. Lam for the proof of Proposition 1.4 which is
much simpler than my original proof.

§ 1. REDUCTIONS TO PROVE THE MAIN THEOREM

1.1. MAIN THEOREM. Let a,be Q™. Then

Q ;O !f a, b > 0
Q” otherwise .

D1, a, b,ab)y) = {
We begin by stating some basic results needed to prove Theorem 1.1.

1.2. LemMA. Let g = {a;,..,a,y,a;,€ F™.
(a) If q isisotropic over F, then Dg(q) = F™.

(b) Let ceF*. Then g Ll <c) is isotropic over F if and only if
— ce Dg(qg).

Proof. (a) Letce F™ be given. An appropriate linear change of variable
lets us assume ¢(1, 0, ..., 0) = 0. Then

A5 s ) = 3%, Bi) + Q520 %)

where some b; # 0. Choose a,,..,a,€ F such that ) b;a; # 0 and let
i=2
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¢ — Q(a2> ) an)
= . Then q(a,, ay, .., a,) = C.
“1 b,a, + .. + b,a, 9(@1 4
(b) Suppose g(a;, ... a,) + ca?,, = 0 where some a; # 0. Ifa,.; #0,
then q( o I & ) — — ¢ Ifa,,,; = 0,then g is isotropic and (a) implies
ap+1 Ap+1 )

— ¢ e Dy(q). The converse is trivial.

13, LemMa. Let abeF*. Then Dg({a,b))) is a subgroup of F~.

Proof. Clearly 1€ Dg{<a,b))) and the following formula shows
Dy(<{<a, b)) is closed under multiplication.

(x2+ax%+bx3+abx}) (y2+ay3+bys+abyl)
= (xlyl—axzyz—bx3y3—abx4y4)2 + a(x1y2+x2y1+bx3y4—bx4y3)2
+ b(x1y3+x3y1+ax4y2—ax2y4)2 + ab(x1y4—|—x4y1+x2y3—x3y2)2

If c e Dp({{a, b)>) then % = & (%) e Dp({{a, b))).

1.4. PROPOSITION. Let ab,ceF*. If <(a b)) L<cy is isotropic
over F then <(<b,c)>y L {a) isisotropic over F.

Proof. We can assume {<b, ¢)) and hence {1, b, ¢) is not isotropic over
F otherwise we are done. By Lemma 1.2 (b), there exists x; € ' such that
— ¢ =x2+4ax2 + bx2 + abx2. Then x?+ bx3 + ¢ = — a(x3+bxj)
and both sides are nonzero since <1, b,c¢)> is not isotropic over F. It

2 2
follows — a = 21 “; bx3 f Ce Db, ¢>>) since Dp{<b,cdd) is a
X5 + bxji

subgroup of F* by Lemma 1.3. Therefore {{b, c)) L <a) is isotropic over F
by Lemma 1.2 (b).

We see from Lemma 1.2 (b) that the Main Theorem is equivalent to
the following more convenient formulation.

1.1 THEOREM. Let a,b,ce Q™. If a,b,c are not all positive, then
a,byy 1 {c) isisotropic over Q.

We begin now setting up the proof of the Main Theorem. We can assume
a,b,ceZ since a, b,c can be replaced by aa?, bP?, cy? for any nonzero
%, B, Yy € Z. Suppose the Main Theorem is false. Then there exist nonzero
a, b, c € Z, not all positive, such that {{a, b)> 1 {c¢) is not isotropic over Q.
We can assume |a| + |b| + |c| 1s minimal among all such counter-
examples and we can assume |a| < |b| < |c| by Proposition 1.4.
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1.5. LeMMA. Continue the assumptions from above. Then |b| < |c| and
| c| is an odd prime number.

Proof. If|c| = 1,then|a| =|b| = 1 and {Ka, b)) L {c) is isotropic
over Q since a, b, ¢ are not all positive. Thus | ¢ | > 1.

Suppose |b| = |c|. If ¢ = — b then {<a, b)) L {c) is isotropic over Q,
a contradiction. If b = ¢ then {{a, b)) L {(b> is not isotropic over Q.
Then Proposition 1.4 implies {<b,b>> L <{a) = {{1,b>> 1L {(a) is not
isotropic over Q. But 1 + |b| +]a| <]a|+|b] +|c| and a, b are not
both positive (since b=c). This contradicts the minimality assumption and
therefore [b| < | c].

Suppose | ¢ | 1s not a prime number and let — ¢ = (—c¢,) (—c,) where
leil, el <lecl. If ¢ <0, we can assume in addition that ¢, c, < 0.
Then {(<a,b>)> 1 {¢;>,i = 1,2, both have at least one of a, b, ¢; negative.
Since |a|+ |b] + ¢ | <]al+|b]+]c], it follows {(a, b)) L {¢;> is
isotropic over Q,i = 1, 2. Then — ¢;, — ¢, € Dy(<<a, b))) by Lemma 1.2 (b)
and — ce Dy(K<a,b))) by Lemma 1.3. This implies <{<a, b)) L <{c) is
isotropic over Q by Lemma 1.2 (b), a contradiction. Therefore | ¢ | is a prime
number.

If |¢c|]=2, then |a|=|b|=1 If a= —1 or b= —1 then
{La, b))y L {c) 1is 1sotropic over Q. If a =b =1, then ¢ = — 2 and
K1, 15> 1L {—=2> is isotropic over Q. These contradictions imply |c| # 2
and therefore | ¢ | is an odd prime.

To finish the proof of the Main Theorem we are reduced to proving
Theorem 1.6:

1.6. THEOREM. Suppose p is an odd prime, a,beZ, and 0 <|al,|b|
< p. Then there exists meZ,0 < |m| < p, suchthat 2mp € Dy(<{<a, b))).

We shall assume Theorem 1.6 has been proved and finish the proof of the
Main Theorem now. We apply Theorem 1.6 with |c| in place of p.
Then there exists me Z,0 < |m| < |c|, such that 2m|c|e Dy(<{<a, b))).
Our minimality assumption implies {{a, b)> L {—|m|) and {{a, b>) L {2}
are both isotropic over Q. Then 2,|m| and hence 2|m]| all lie in
Do({{a, b)»). If a,b > 0 then ¢ < 0 and it must be that — c € Do(<<a, b>>).
If either a < 0 or b < 0 then — 1€ Dgy(<{<a, b)) since {a, b)> L (1) is
isotropic over Q by our minimality assumption. Therefore — c € Do(<<a, b))
in both cases and {{a, b)>)> L {c) is isotropic over Q. This contradicts our
assumption that a counterexample to the Main Theorem exists and finishes
the proof of the Main Theorem.
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Remark. A natural attempt to finish the proof of the Main Theorem
would be a version of Theorem 1.6 where one finds M € Z,0 < [M | < p,
such that Mp € Do({<{a, b))). But according to [Mo], p. 169, one can only

guarantee | M | < /2|ab| < \/2p* = ﬁp. If one could also make M even,

then this result in [Mo] would give a proof of Theorem 1.6.
. c
It remains to prove Theorem 1.6. If p is an odd prime, let (E) be

c p—1
the Legendre symbol: If (c¢,p) = 1, then (;) = + — 1 where ¢ 2

= (-c—> mod p. In the course of proving Theorem 1.6 we will use the following

D
result.

1.7. THEOREM. Let p be an odd prime, p # 5, and let a,b be integers

b
such that (ﬁ) = <—> = 1. Then there exist x,yeZ such that
p p
2 b 2
(B2 - ka5 <
p

We shall assume Theorem 1.7 has been proved and give now the

Proof of Theorem 1.6. 1f {{a, b)) is isotropic over Q then we are done
by Lemma 1.2(a). Now assume {({a, b)) is not isotropic over Q. First
assume at least one of — a, — b, — ab 1s a quadratic residue mod p. Let

oe{— a, — b, — ab} where <f‘f) = 1. There exists B,1 < B < p — 1, such
p .

that p|p> — o and B> — o is even (replace B by p — P if necessary).
Then |B*> —a| < B?+ |a| < p® + p* = 2p>. Therefore, P> — o = 2mp
where 0 < | m| < p and 2mp € Dy({<a, b))).

If p=1mod4 then at least one of — a, — b, — ab is a quadratic

residue mod p since (7> = 1 and p t ab. Now suppose p = 3 mod 4.

Then at least one of — a, — b, — ab is a quadratic residue mod p unless

a b a b
<—> = (—> = 1. Suppose <—> = <—> = 1 and choose x, y as in Theorem 1.7.
p p ' p p

Since p = 3mod4, we have — (ax®>+by?) is a quadratic residue mod p
and hence there exists B, 1 < p < p — 1, such that p| B> + ax?® + by? and
B* + ax® + by® is even. Then |B* + ax? + by?| < P2 + |a| x> + | b| y?
< p® + p(x*+y?) < 2p>.  Therefore, B2 + ax®> + by> = 2mp  where
0 <|m| < pand B> + ax®> + by* € Do(<<a, bDD).
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The proof of Theorem 1.7 is given in the next section. Although we
need Theorem 1.7 only when p = 3 mod 4 we give a complete proof since
very little additional work is required.

§2. THE PROOF OF THEOREM 1.7

In this section p denotes an odd prime number. We begin by recalling
a result about sequences of quadratic residues and nonresidues mod p.

2.1. LeEMMA. The number of pairs (n,n+1) in the set {1,2,..,p — 1}

—1
p p— —_—
such that <ﬁ> =1, (i> = — 1 is equal to P/
b

P 4

Proof. This elementary result is proved completely in [Ha], p. 157-158.
(See also [An], Chapter 10.)

The next two lemmas give a way to count the number of lattice points
(x,y)eZ x Z,x,y > 0, satisfying the conditions of Theorem 1.7.

Let

F(x)={(,B)eZ x Z|o, B> 0,0% + B* < x?}

and let 2(x) = {(o, B) e L (x)] (o, B) = 1}. Let S(x) = | #(x)| and P(x)
= | 2(x)|. (It will be clear from context whether we mean the point
(o, B) or the greatest common divisor of «, f3.)

2.2. LeEMMA. Let R be the set of nonzero squares mod p.
2

(a) The function 9:.@(\/;) — R given by 0(x,y) = 3%modp is an
X

injection.

1
() P(/p) <5 (0—1)

1
Proof. Clearly (a) implies (b) since | R | = 5 (p—1). If (a) is false then there

Y

exist two distinct points (x,, y4), (x5, y,) in 9(\/1-9) such that — = =3
X1 X2

| Then yix3 — x1y3 = (¥1X2+x1¥3) (V1% —X1),) = 0 mod p. We have y;x,
| )

. + x,y, # 0 since x;, y; > 0 and y;x, — xyy, # 0 otherwise 122 and
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