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AN ELEMENTARY PROOF OF A THEOREM ON

QUADRATIC FORMS OVER THE RATIONAL NUMBERS

by David B. Leep

Introduction

It is well known, and easy to prove, that each positive rational number

is a sum of four rational squares. The main idea of the proof is that

the set of nonzero rational numbers which are sums of four squares forms

a group under multiplication.
Let F be a field of characteristic # 2, Fx the nonzero elements of F,

and let <als..., af) denote the quadratic form axx\ + + anx2 where

ate Fx. Let

Then DF{{ 1, a, b, ab» is a multiplicative subgroup of Fx. (See Lemma 1.3.)

Let Q be the field of rational numbers. The goal of this paper is to give

a new and elementary proof of the following theorem of which the result

above is a special case.

Main Theorem. Let a, be Qx. Then

There are essentially three ways to prove the Main Theorem at present.
One way is to use the Hasse-Minkowski theorem ([La], p. 168). This is,

however, a difficult theorem to prove. Proofs of the Hasse-Minkowski
theorem rely on Dirichlet's theorem on primes in an arithmetic progression
([Se], [BS]), class field theory ([Om]), or Gauss' theory on the existence

of certain types of binary quadratic forms ([Ca]). (Actually, Skolem showed
in [Sk] that a weaker analytic result than Dirichlet's theorem suffices to
give a proof of the Hasse-Minkowski theorem.) A second way to prove the
Main Theorem is to use Meyer's theorem that an indefinite 5-dimensional
quadratic form over Q is isotropic. This theorem was originally proved using

n
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the classical integral theory of quadratic forms over the integers and also

depends on Dirichlet's theorem or Gauss' theory mentioned above. A third
way is to use the so called weak Hasse-Minkowski theorem. A proof of
this can be found in [La], p. 174-178, but knowledge is required of Witt
rings, local fields, exact sequences, and Springer's theory for quadratic forms

over local fields.

Until now, no proof of the Main Theorem, much less an elementary one,
has appeared exploiting the fact that Z)Q«1, a, b, ab}) is a multiplicative
subgroup of Qx. We present a truly elementary proof below using nothing
more exotic than the notion of quadratic residues and the Möbius function.

We follow basic terminology and notation as found in [La]. In particular,
a quadratic form af) is isotropic over F if there exist x1,..., x„ e F,

n

not all zero, such that £ at x f 0. We have the orthogonal sum
i= 1

<0i, —, am} _L (b1,..., bf) <flx,..., am, bln.., bf) and «a, b}} stands for
<1, a, b, ab).

I wish to thank T.Y. Lam for the proof of Proposition 1.4 which is

much simpler than my original proof.

§ 1. Reductions to prove the Main Theorem

1.1. Main Theorem. Let a, b g Qx. Then

fQ > o if a, b > 0
DQ«l,a,M(.» (Q, otherwüe

We begin by stating some basic results needed to prove Theorem 1.1.

1.2. Lemma. Let q a„}, ate Fx.

(a) If q is isotropic over F, then DF(q) Fx.

(b) Let cgFx. Then q 1 <c> is isotropic over F if and only if
- cGDF(q).

Proof (a) Let c g Fx be given. An appropriate linear change of variable

lets us assume q{ 1, 0,..., 0) 0. Then

n

x„) xx(E btXi) + x„

where some bt =£ 0. Choose a2,ansuch that E ^^ 0 and let
i 2
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