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CAUCHY RESIDUES AND DE RHAM HOMOLOGY

by Birger IVERSEN

This paper represents my third attempt to write up a suitable generaliza-
tion of the classical Cauchy Residue theorem. As I pushed the earlier
versions for naturality and generality I was ultimately lead to a new
foundation of de Rham homology free of the theory of distributions but
relying on basic sheaf theory much like the Borel Moore homology theory.

Singular homology and de Rham homology agree on a smooth manifold.
The whole point in introducing de Rham homology is the posibility of
alternative representations of homology classes. This is amply illustrated by
the general Cauchy residue formula given at the end of the paper.

I would like to thank the Mittag Leffler Institute at Stockholm for
hospitality while this paper was worked out.

1. COMPACT CHAINS

Let X denote a smooth n-dimensional manifold. For an integer p we let
I'(X, QF) denote the space of C-valued differential p-forms on X. By a
compact p-chain on X we understand a C-valued linear form T on I'(X, Q?)
for which there exists a compact subset K of X such that

(1.1) <T,o> =0, 0el(X,Q%), Supp(@nK = O,

where the bracket denotes simple evaluation of a linear form. The compact
p-chain T on X gives rise to a (p—1)-chain bT on X given by

(1.2) <bT,0> = <T,do>, wel(X,Qr 1.

The operator b makes the compact p-chains on X into a complex, which
we denote DX, C). A compact p-chain T is closed if bT = 0, By a
compact p-cycle we understand a closed p-chain, while a compact p-boundary
is a p-cycle of the form bW, where W is a compact (p+ 1)-chain. We say

that p-cycles S and T are homologous if T — S is a p-boundary. An
explicit relation of the form
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(1.3) T —S=bW, WeD%,,(X,C),

is called a de Rham homology from S to T. Explicit de Rham homologies
are often constructed on the basis of Stokes theorem, compare the formulas
to the right of the drawings in section 7.

Let us make the important observation that homologous p-chains have
the same evolution on any closed p-form. The group of de Rham homology
classes is denoted by

(1.4) HYX,C) = H,DX, C).

The letter ¢ in the homology symbol is borrowed from Haefliger’s exposé
in [1].

A smooth map f:X — Y will induce a chain map from the complex
of compact chains on X to the complex of compact chains on Y

f.: DX, C) - DY, C).

To see this notice that a given compact subset K on X and a p-form ®
on Y supported outside f(K) pulls back to a form f*w supported outside
K. We can now define f, T by the formula

(1.5) <feT,0> = <T, f*o>, TeDyX,C),oecl(Y,Q?).

These remarks make it clear how to turn de Rham homology into a
covariant functor on the smooth category.

Zero cycles. Evaluation of a compact zero cycle Z against the constant
function 1 defines the degree of the zero cycle

(1.6) dg(Z2) = <Z, 1>, ZeD{X,C).

"A point xe X defines a zero cycle of degree 1, the Dirac O-cycle 9,
given by

(L) <8, 0> = o(x), 9el(X,Q°.

A continuously differentiable curve y: [a, b] - X with endpoints x = y(a)
and y = vy(b) defines a de Rham homology from &, to 3,:

(1.8) J do = ¢(y) — o(x), ¢el(X,Q.

In case X is connected, then all zero cycles of degree zero are homologous
“to zero as it follows from the result of the next section.
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A smooth map f:X — Y will preserve the degree of a zero cycle
in the sense that

(1.9) dg(f,T) = dg T, TeDyX, O,

as it follows from (1.5). ;
The reader is invited to replace C by R and change the meaning of
the symbol Q from complex to real differential forms.

2. BIDUALITY

In this section we shall show that de Rham cohomology can be
calculated as the linear dual of de Rham homology in the same way
singular cohomology can be obtained from singular homology.

(2.1) THEOREM. Let X denote a smooth manifold. Evaluation of a compact
p-chain against a p-form induces an isomorphism

HP(X, C) > Hom (H(X, C), C)
for all integers p.

Proof. The hart of the matter is of sheaf theoretic nature, so we start
with a brief review during which the reader is invited to change the
meaning of the letter X to denote a general locally compact space and
the letter C to denote an arbitrary field. For notation and details the reader
may consult [5] V.1, and the references given there.

To a soft C-sheaf F on X we can associate the sheaf FY whose
sections over the open subset U of X are given by

(2.2) (U, F¥) = Hom (T(U, F), C)

Restriction in the sheaf FY from U to a smaller open subset V is the
C-linear dual of “extension by zero”

L.(V,F)->T(UF), VeuU.

The presheaf F¥ we have described is actually a sheaf and indeed a soft
sheaf. This allows us to iterate the construction and form FY V. We shall
construct a natural biduality morphism of C-sheaves on X

(2.3) F—FvY.
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To this end consider the tautological evaluation
I(U,FY) x T (U, F) - C.
This can be modified to yield a pairing
| ev:I.(U,FY) x I'(U, F) - C

namely, for TeI.(U, F¥) and ® € I'(U, F) choose v e I' (U, F), such that ®
and v has the same restriction to Supp(T), and put ev(T, ®) = T(v).
The evaluation map may be interpreted as a transformation

(2.4) ay:T'.(U, F¥) - Hom (I(U, F), C).
An open subset V' of U gives rise to a commutative diagram
I.(V,F¥) % Hom ([(V, F), C)

(2.5) l !
T,(U, F¥) “ Hom (T(U, F), C)

where the first vertical arrow is “extension by zero” in the soft sheaf FV
and the second vertical arrow is the linear dual of restriction in the sheaf
F. Let us return to the open subset U and consider the composite

I'(U, F) > Hom (Hom ((U, F), C), C) i T(U, F¥ ")

where the first arrow is the biduality map from linear algebra. By variation
of U we obtain the biduality morphism b: F — FY Y announced in (2.3).

Let us now return to the situation at hand and consider the biduality
morphism for the de Rham complex.

(2.6) h:Q - Q VY

which we shall prove to be a quasi-isomorphism. The question is local,
so it suffices to check the case X = R”", which can be done by the Poincaré
Lemma with and without compact support. Both complexes are made of soft
sheaves, so we lean on the fact, implicit in the definition of a manifold,
that X is countable at infinity to conclude that b induces isomorphisms,
compare [5] IV.2.2,

HY(X,C) > HT(X,Q"""), peN.

In order to identify the right hand side notice first that
[(X,QvY) = Hom(I'(X,Q""), C)

R AT
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and second, that the map ay introduced in (2.4) induces an isomorphism
(2.7) a:T.(X,QV)5 DYX, C).

Collect this together to conclude the proof. Q.E.D.
The de Rham homology as defined here agrees with the original theory
based on currents [6]: the inclusion of the complex of currents in Q." is a
quasi-isomorphism as can be seen by the method used in the last third of
the proof above.
As a consequence of the isomorphism (2.7) we can of course redefine
de Rham homology as

(2.8) HX,C) = H,I(X,Q").

If the letter ¢ i1s dropped we obtain Borel Moore homology, compare [5] IX
and the references given there.

The biduality theorem 2.1 is certainly related to that of Verdier [7], [1].
In fact most of the material presented here may be extended to a context
of similar generality. I hope to return to this point in the near future.

¢
3. SMOOTH SINGULAR HOMOLOGY

Let us consider an n-dimensional smooth manifold X. Integration over
smooth singular simplexes defines a map
(3.1) S2(X, €) » DX, C)
from the complex of smooth singular simplexes to the complex of compact
chains on X.
(3.2) THEOREM. Integration induces an isomorphism

H*(X,C) - H{(X, C)

from smooth singular homology to de Rham homology.

Proof. Let us first discuss Mayer-Vietoris sequences in de Rham homo-
logy. For open subsets U and V of X a Mayer-Vietoris sequence arises
from the following exact sequence of complexes

(33) 0> T (UNV, Q") S T(U, Q)@ I[L(V,Q V) S L (UUV,Q ¥)>0.
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The main reason for the exactness of the sequence is
HYUAV,Q4) = 0, geN,

compare [5] III. 7.5. The vanishing of the cohomology group follows from
the fact that Q7" is a flabby sheaf.

In singular homology the Mayer-Vietoris sequence originates from the
tautological exact sequence

0 > S2(UAV,C) > S2(U, C) @ S=(V,C) - S=(U, V;C) - 0,

where S®(U, V; C) is the complex based on singular simplexes supported
entirely by U or entirely by V. The difficult part is to prove that the
inclusion

S2U,V,C) - S2(UuV, C)

1s a quasi-isomorphism, compare [§].

This description makes it obvious that the Mayer-Vietoris sequences in
the two theories are connected by a commutative ladder.

A second common feature of the two theories is that given a manifold X
which is the disjoint union of the family (X,) of open subsets, then

(3.4) é H.(X,,C) > H.(X, C)

as it follows from the Borel-Heine theorem.
Let us now investigate the case X = R". The homology groups are for
both theories, compare (2.1)

HyR" C)=C, HR,C)=0, i>1.

The transition from H ®(R", C) to HYR", C) is an isomorphism as it follows
from the discussion of zero cycles at the end of section 1, see also (2.1).

The result follows by Fribourg-induction, an elementary but ingenious
induction procedure based on the Mayer-Vietoris sequence, see [2] or [4]
where this method is used for the proof of Poincaré duality and the
Kinneth theorem. The last reference attributes this method to the master
thesis of C. Auderset, Fribourg 1968. Q.E.D.

Let us record that the canonical isomorphism from smooth singular
homology to singular homology

(3.5) H=(X,C) > H.(X, C)

likewise can be established by Fribourg-induction.




CAUCHY RESIDUES 7

If we combine theorem (3.2) and the biduality theorem (2.1) we obtain
what is usually known as the

(3.6) DE RHAM THEOREM. Integration over smooth singular simplexes induces
an isomorphism

H'(X,C) > H,_(X,C)

from de Rham cohomology to smooth singular cohomology.

4. RELATIVE DE RHAM HOMOLOGY

Let us start by some general remarks on the support of a compact
p-chain T on a smooth n-dimensional manifold X. Since we can realize T
as a section in the sheaf QF" the general sheaf theoretic notion of support
applies: The support of T, Supp(T) is the smallest closed subset Z of X,
such that the restriction of T to X — Z is zero.

(4.1) ExampLE. Integration over an oriented compact p-dimensional sub-
manifold K with boundary defines a compact p-chain x with Supp (x) = K.
From Stokes formula

Jdmzj o, oel(X,Qr),
K 0K

we conclude that Supp (bx) = 0K.

Let us now consider the inclusion j: U — X of an open subset U of X.
The induced map

Jx: DYU,C) > Di(X,C), peN,

Is injective since we may interpret j, as “extension by zero” in the sheaf
Q ), compare (2.5). A compact p-chain T on X belongs to the image of T
if and only if Supp(T) = U. The complex DX, U; C) of relative compact
chains is defined to fit into the following exact sequence

4.2) 0 - DU, C) 3 DYX, C) » DX, U;C) > 0.
On this basis we can define the relative de Rham homology group

H,(X,U;C) = HDYX,U;C), peN.
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In more concrete terms we can describe this homology group as
43) {ZeDyX,C)|Supp(bZ) = U} / {bW|WeDs, (X, C)}
+ {ZeD,(X,C)|Supp(Z) = U}
From the exact sequence (4.2) we deduce the homology sequence
(4.4) - H(U,C)-» Hy(X,C) - H(X,U;C)
- H,_(U,C) - H,_,(X,C) -

Let f: X - Y denote a smooth map, U an open subset of X and V
an open subset of Y containing f(U). Let us notice that

(4.3) Supp (f,T) = f(Supp(T)), TeDyX,C).

These remarks make it evident, that de Rham homology is a covariant
functor on the category of pairs consisting of a manifold and one of its
open subspaces.

(4.6) Excision. Let Z be a closed subset of X and Y an open subset
of X containing Z. The inclusion of V = Y — Zin U = X — Z induces an
isomorphism

HYY,V;C) > HYX, U;C).

Proof. Let i:Z — X denote the inclusion. From the fact that Q-V
consists of soft sheaves we deduce an exact sequence

0-T.(U,QV)->T.(X,Q)>T.(Z,i*Q"Y) >0
compare [5] III. 7.6. This alows us to make the identification
4.7 DYX,U;C)>T.(Z,i*Q2"Y), Z=X-U.

The expression on the right hand side is unchanged, when X is replaced
by Y and U by V. Q.ED.

(4.8) Continuity. Let (X,) be an outward directed open covering of the
manifold X. For any open subset U of X we have that

lim HY(X,, UnX,;C) = HX, U;C)

—a

Proof. As a consequence of the theorem of Borel-Heine, see possibly
[5] III. 5.2, we find that

lim DX, C) = DX, C)
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and similarly with X replaced by U and X, replaced by U n X,. Using
this and the exact sequence 4.2 we get that

lim DX,, UnX,;C) = DIX, U; ()

from which the result follows by passing to homology. Q.E.D.

Let us also notice that in case X is the disjoint union of a family
(X,) of open subsets we have that

(4.9) & HY(X,, UnX,;C) > HY(X, U; C).

5. STOKES FORMULA

Let us consider the open subset U of the n-dimensional smooth manifold X
and the resulting exact sequences

~ Hy(X, ) » H5(X, U;©) 5 H,_ (U, €) 3 H_y(X, ©) -
(5.1) , j*
— H?(X,C) « H?(X,U;C) < H? " Y(U,C) «~ H? (X, C) «

where the first is discussed in the previous section and the second is the
sheaf cohomology sequence. The relative term in the second sequence is often
written

(5.2) HYX,C) = H*(X,U;C), Z=X—-U.
We can now extend the biduality theorem (2.1).
(5.3) THEOREM. The cohomology sequence above is dual to the homology
sequence. In particular we have a Stoke’s formula
<ba,®> = <o, 00>
for ae HY(X,U;C) and ®e H?"Y(U,C).

Proof. The first sequence arises from the following short exact sequence
of complexes, compare (4.2) and (4.7),

0T (U, Q)3 (X, Q) L(Z 0 ¥)—0.

In order to calculate the second sequence we depart from the flabby
resolution Q" of R established in the proof of the biduality theorem (2.1).
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The basic philosofy being that flabby sheaves are acyclic for local coho-
mology, [5] II. 9.3. Thus we can calculate the cohomology sequence (5.1)
from the short exact sequence

ok
0T(U,Q ) T(X,Q V)« T,X,0 V)« 0.

According to formula (2.4) we may identify the arrow marked j* with the
linear dual of the arrow marked j,. Simple evaluation according to (2.4)
will be written

<T,I>, Tel,(X,)'"), leT(X,Q""").

This notation is compatible with the symbol introduced in section 1 taking
the biduality morphism (2.6) into account. We leave the remaining details
with the reader. Q.E.D.

6. POINCARE DUALITY

Let X be a n-dimensional oriented smooth manifold. A compactly
supported (n—p)-form o« on X defines a compact p-chain Pa given by

6.1) <Po, B> =J arB, Bel(X,Qr).
X

(6.2) THEOREM. For a smooth oriented n-dimensional manifold X, the
transformation P induces an isomorphism

P:H! %(X,C) - Hy(X,C), peN,
from de Rham cohomology with compact support to de Rham homology.
Proof. The following diagram is commutative
I(X, "7 5> DYX,C)
(6.3) L (=1)d L(=1""
(X, Q"7 5 De_ (X, C)
as it follows from the relation

donB) = (do) » B+ (—1)""Pa » dB, el (X,Q"7), Bel(X,Qr),
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using that Jd(ocAB) = 0. Upon replacing X by an arbitrary open subset

we obtain a morphism of complexes of sheaves
(6.4) P:Q'[n] - Q"

with the signs of the differentials modified according to the commutative
diagram (6.3). The morphism (6.4) is a quasi-isomorphism as it follows by
checking the case X = R”" by means of the Poincaré¢ lemma with and without
compact support. As in the proof of (2.1) we conclude that P induces a
quasi-isomorphism

P:T,(X,Q [n]) - TL(X, Q" ).

The second complex may be identified with DX, C) as we have seen
in (2.3) and the result follows by passing to homology. Q.E.D.

Let us extend Poincaré duality to the relative groups of an open subset U
of X with complement Z in X. With the notation of (6.1), the operator P
from (6.4) induces a commutative diagram

0T (U,Q[n]) » T(X,Q[n]) » T(Z,Q[n]) > O

! l | P
0-DYU,C) 3 DYX,C) — DX,U;C) — 0.
Again the differentials in the bottom row must be modified as in (6.3).
The unmarked vertical arrows are the quasi-isomorphisms of Poincaré duality.

The vertical arrow marked P is induced by the algebra of the diagram.
Again, from algebra we deduce a quasi-isomorphism

(6.5) P:T.(Z,Q[n]) > DX, U;C), Z=X-U.
Passing to homology we obtain the Poincaré duality isomorphism
(6.6) P:H" %Z,C) > HYX,U; C).

The p’th sheaf cohomology group with compact support H?(Z, C) has the
following de Rham representation

(6.7) {oel.(X,QF)|Supp(do) < U} {dviveTl. (X, Qr 1)
+ {0 e (X, Q%) | Supp () = U}

as it follows from the exact sequence making up the top row of the diagram
above.
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7. WINDING NUMBERS

Let X be an n-dimensional oriented smooth manifold and s a point of X.
Consider a compact n-dimensional submanifold with boundary B with s as an
interior point and put

(7.1) Tr(w;s) = J o, oel(X—{s},Q" 1), do = 0.

éB

This symbol is independent of B as it follows by considering a small
“ball” C around s contained in the interior of B

Stokes formula for B — C°

J OJ—J (D:j do .
0B oC B—CO

Alternatively, choose a compactly supported smooth real function p, on X
which is constant 1 in a neighbourhood of s. Then

(72) Tr(w;s) = (—1)”J‘ o rdp,, 0el(X—{s},Q"" 1), do =0.

X

Proof. Choose “balls” B and D with center s such that p, is constant 1
on B while Supp(p) is contained in the interior of D. From Stokes
formula we get that

oD

J‘psm_J\ps(D:J psAm—J Ps®

oD 0B D—B D—-B

—J 03=—(—1)"J03Adps+f pAdm .
0B X D—-B

AN
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Notice that the last terms vanishes in case o 1s exact. Q.E.D.

(7.3) Example. Let E denote an oriented n-dimensional Euclidian space.
The distance r to the origin defines a 1-form dr*™" on E — {0}. The dual
form *dr?~" in the sense of Hodge is closed with

Tr (*dr*~";0) = 2—n)o,_,

where o,_,; denotes the area of the unit sphere in E, compare [3] VIL 1.

Let us interprete (7.1) in terms of de Rham homology. Integration of
n-forms on X over the manifold B determines a compact n-chain on X
whose boundary, as written in (7.1), has support in X — {s}. The corres-
ponding relative homology class

(7.4) 0, e HY(X, X—{s};C), seX,

is independent of B: with the notation above, the compact n-chain
J —J has support in X — {s}. The relative homology class we have
ju:t consctructed 1s often called the local orientation class.

(7.5) PROPOSITION. Let s be a point of an oriented n-dimensional smooth
manifold X. The local orientation class 0, generates H(X, X —{s};C).

Proof. With the terminology from section 5 we may express formula (7.1)
by means of the local orientation class

(7.6)  Tr(w;s) = <06, 00> = <bb,, 0>, weH" YX—{s},C).

In case n > 2 we conclude from (7.3), that O, # 0. The case n = 2 is left
with the reader. Q.E.D.

Let us remark that formula (7.2) shows how to identify 0, under relative
Poincaré duality (6.6).
(7.7) PROPOSITION. Let S be a finite subset of the oriented n-dimensional

compact manifold X. For any closed form oeI(X—S, Q") we have that

Y Tr(w;s) = 0.

seS

Proof.  Let the fundamental class 0 € H,(X, C) be given by

<0, o> =Jc0, o e I'(X, Q).
X
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Let us consider a point se€S and use the notation from (7.1). The
difference f — j has support in X — {s}, which shows that the image
of 6 in H,,(X),(X—{I;} ; C) is B,. We have that

Y. Tr(w;s) = ) <8, 00> = <05, 00> = <bby, 0>

seS seS

where Og denotes the restriction of 6 to H,(X, X —S; C). Conclusion by the
fact that b5 = 0. Q.E.D.

(7.8) Definition. Let y be a compact n-chain on the oriented n-dimensional
smooth manifold X. For a point se X outside Supp (by) the class of vy
in H{(X, X —{s}; C) can be written

[v] = Ind(y;s)06,, Ind(y;s)eC.

The number Ind(y;s) is called the winding number of y with respect to s.

(7.9) Example. Let K denote an n-dimensional compact submanifold with
boundary. Integration over K defines a compact n-chain « with Supp (k)
= 0K. The winding number for x is 1 in the interior of K and 0
outside K.

(7.10) THEOREM. Let 7y be a compact n-chain on the oriented n-dimensional
smooth manifold X. The winding number s+ Ind(y;s) is a locally
constant function on the complement of Supp(by) in X. This function is
zero outside some compact subset of X containing Supp (by).

Proof. Let us consider an arbitrary open subset U of X containing
Supp (by). We shall now use relative Poincaré duality to describe. the class

of vy in H{X, U; C). According to (6.6) and (6.7) we can represent vy by a
relative n-chain of the form

<y, V> = [ pv, vel(X,Q"
X

where p is a compactly supported smooth function on X, constant in a
neighbourhood of any point s of Z = X — U. Let us notice that

<oy, o> = (—1) Jco ~dp, 0oell(U, Q" Y, do =0.
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In order to calculate Ind(y;s) we replace U by a small pointed neigh-
bourhood D* of s. With the notation of (7.2) let us write p = p(s)ps
and deduce that

<dy, o> = p(s)Tr(w;s), oel(D* Q" 1), do =0.
We can now conclude from (7.6) that
Ind(y;s) = p(s), seX —U.

This reveals that s+~ Ind(y;s) is a compactly supported, locally constant
function on X — U. |

For a given fixed point s ¢ Supp (by) choose U to be an open neigh-
bourhood of Supp(by) with U compact and s¢ U. We can apply the
considerations above and conclude that the winding number is constant
in a neighbourhood of s and zero outside some compact neighbourhood of

Supp (by). Q.E.D.

(7.11) CoroLLARY. Let <y be a compact n-chain on the oriented smooth
manifold X and U an open subset of X containing Supp (by). The
relative de Rham homology class

[vYle HYX, U;C)
is zero if and only if Ind(y;s) = 0 forall se X — U.

Proof. This is a corollary to the proof of (7.10) rather than the
statement (7.10). Anyway, the basic point is Poincaré duality (6.6). Q.E.D.

8. CAUCHY’S RESIDUE THEOREM

We shall consider a smooth map y:S""! - E from the oriented n — 1
sphere into an oriented n-dimensional real vector space E. For a point s
outside y(S"™ ') pick a closed (n—1)-form o, on E — {s} with Tr(,;s) = 1
and define the winding number of y with respect to s to be

(8.1) Ind(y;s) = J Y*O .
Sn—1

(82) CaucHY’S RESIDUE THEOREM. Let y:S""! - X denote a smooth map
into an open subset X of E with Ind (v;z) =0 for all zeE — X.
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For a closed and discrete subset S of X disjoint from (S"~') only
finitely many of the numbers Ind(y;s),seS, are distinct from zero and

j y*@ = Y Ind(y;$)Tr(o;s)
Sn—l

seS
for any closed form ® on X — S.

Proof. The long exact de Rham homology sequence for the pair
X — S, E degenerates into an isomorphism

b: H{E,X—S;C) > H_,(X-S,C).
Let us view y as a homology class on X — S and introduce the class
b 'vye HYE,X-S;C).

Let us notice that the winding number (8.1) and (7.8) agree. Thus we
conclude from (7.11) that b~y maps to zero in HYE, X;C) and con-
sequently that y is homologous to zero on X. The exact sequence

0~ H(X, X—§;C) > H_(X—S,C) - Hy (X, C)
allows us to interpret v as a relative class
veH{(X,X—S;C).
The class y can be specified by the formula
<by,0o> = J v*@, 0el(X—S,Q" 1), do = 0.
Sn-1

From the decomposition (4.9) and excision (4.6) we deduce a canonical
isomorphism

H,(X, X—5;C) 5> @ H,(X, X —{s};C)

seS

which allow us to decompose the class y into a finite sum, compare (7.6),

y = Ind(y;9)6;.

seS

Using the general Stokes formula (5.3) we get that
<by,0> = <y,00> = ) Ind(y;s) <6, o>

and the result follows from formula (7.6). Q.E.D.
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