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AN ELEMENTARY PROOF OF A THEOREM ON
QUADRATIC FORMS OVER THE RATIONAL NUMBERS

by David B. LEEp

INTRODUCTION

It is well known, and easy to prove, that each positive rational number
is a sum of four rational squares. The main idea of the proof is that
the set of nonzero rational numbers which are sums of four squares forms
a group under multiplication.

Let F be a field of characteristic # 2, F* the nonzero elements of F,
and let <a,,..a,> denote the quadratic form a;x? + .. + a,x; where
a;e F~. Let

Dp{ay,..ay) = {ce F*|c = ) ayx},x;eF}.
=

Then Dy({1, a, b, ab)) is a multiplicative subgroup of F*. (See Lemma 1.3,
Let Q be the field of rational numbers. The goal of this paper is to give
a new and elementary proof of the following theorem of which the result
above is a special case.

MAIN THEOREM. Let a,be Q™. Then

Q X, (positive rationals) if a,b > 0
Q" otherwise .

Dy({1, a, b, ab)) = {

There are essentially three ways to prove the Main Theorem at present.
One way is to use the Hasse-Minkowski theorem ([La], p. 168). This is,
however, a difficult theorem to prove. Proofs of the Hasse-Minkowski
theorem rely on Dirichlet’s theorem on primes in an arithmetic progression
([Se], [BS]), class field theory ([Om]), or Gauss’ theory on the existence
of certain types of binary quadratic forms ([Ca]). (Actually, Skolem showed
in [Sk] that a weaker analytic result than Dirichlet’s theorem suffices to
give a proof of the Hasse-Minkowski theorem.) A second way to prove the
Main Theorem is to use Meyer’s theorem that an indefinite 5-dimensional
quadratic form over Q is isotropic. This theorem was originally proved using
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the classical integral theory of quadratic forms over the integers and also
depends on Dirichlet’s theorem or Gauss’ theory mentioned above. A third
way 1s to use the so called weak Hasse-Minkowski theorem. A proof of
this can be found in [La], p. 174-178, but knowledge is required of Witt
rings, local fields, exact sequences, and Springer’s theory for quadratic forms
over local fields.

Until now, no proof of the Main Theorem, much less an elementary one,
has appeared exploiting the fact that Dg(<1, a, b, ab)) is a multiplicative
subgroup of Q™. We present a truly elementary proof below using nothing
more exotic than the notion of quadratic residues and the Mobius function.

We follow basic terminology and notation as found in [La]. In particular,
a quadratic form {a,, .., a,y is isotropic over F if there exist x,, .., x, € F,

not all zero, such that ) a;x? = 0. We have the orthogonal sum
i=1

{ay, oy @py L by, .ub,y = <ay,...a,,b,,.., b,y and {{a, b)) stands for
{1, a, b, ab>. '

I wish to thank T.Y. Lam for the proof of Proposition 1.4 which is
much simpler than my original proof.

§ 1. REDUCTIONS TO PROVE THE MAIN THEOREM

1.1. MAIN THEOREM. Let a,be Q™. Then

Q ;O !f a, b > 0
Q” otherwise .

D1, a, b,ab)y) = {
We begin by stating some basic results needed to prove Theorem 1.1.

1.2. LemMA. Let g = {a;,..,a,y,a;,€ F™.
(a) If q isisotropic over F, then Dg(q) = F™.

(b) Let ceF*. Then g Ll <c) is isotropic over F if and only if
— ce Dg(qg).

Proof. (a) Letce F™ be given. An appropriate linear change of variable
lets us assume ¢(1, 0, ..., 0) = 0. Then

A5 s ) = 3%, Bi) + Q520 %)

where some b; # 0. Choose a,,..,a,€ F such that ) b;a; # 0 and let
i=2
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¢ — Q(a2> ) an)
= . Then q(a,, ay, .., a,) = C.
“1 b,a, + .. + b,a, 9(@1 4
(b) Suppose g(a;, ... a,) + ca?,, = 0 where some a; # 0. Ifa,.; #0,
then q( o I & ) — — ¢ Ifa,,,; = 0,then g is isotropic and (a) implies
ap+1 Ap+1 )

— ¢ e Dy(q). The converse is trivial.

13, LemMa. Let abeF*. Then Dg({a,b))) is a subgroup of F~.

Proof. Clearly 1€ Dg{<a,b))) and the following formula shows
Dy(<{<a, b)) is closed under multiplication.

(x2+ax%+bx3+abx}) (y2+ay3+bys+abyl)
= (xlyl—axzyz—bx3y3—abx4y4)2 + a(x1y2+x2y1+bx3y4—bx4y3)2
+ b(x1y3+x3y1+ax4y2—ax2y4)2 + ab(x1y4—|—x4y1+x2y3—x3y2)2

If c e Dp({{a, b)>) then % = & (%) e Dp({{a, b))).

1.4. PROPOSITION. Let ab,ceF*. If <(a b)) L<cy is isotropic
over F then <(<b,c)>y L {a) isisotropic over F.

Proof. We can assume {<b, ¢)) and hence {1, b, ¢) is not isotropic over
F otherwise we are done. By Lemma 1.2 (b), there exists x; € ' such that
— ¢ =x2+4ax2 + bx2 + abx2. Then x?+ bx3 + ¢ = — a(x3+bxj)
and both sides are nonzero since <1, b,c¢)> is not isotropic over F. It

2 2
follows — a = 21 “; bx3 f Ce Db, ¢>>) since Dp{<b,cdd) is a
X5 + bxji

subgroup of F* by Lemma 1.3. Therefore {{b, c)) L <a) is isotropic over F
by Lemma 1.2 (b).

We see from Lemma 1.2 (b) that the Main Theorem is equivalent to
the following more convenient formulation.

1.1 THEOREM. Let a,b,ce Q™. If a,b,c are not all positive, then
a,byy 1 {c) isisotropic over Q.

We begin now setting up the proof of the Main Theorem. We can assume
a,b,ceZ since a, b,c can be replaced by aa?, bP?, cy? for any nonzero
%, B, Yy € Z. Suppose the Main Theorem is false. Then there exist nonzero
a, b, c € Z, not all positive, such that {{a, b)> 1 {c¢) is not isotropic over Q.
We can assume |a| + |b| + |c| 1s minimal among all such counter-
examples and we can assume |a| < |b| < |c| by Proposition 1.4.
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1.5. LeMMA. Continue the assumptions from above. Then |b| < |c| and
| c| is an odd prime number.

Proof. If|c| = 1,then|a| =|b| = 1 and {Ka, b)) L {c) is isotropic
over Q since a, b, ¢ are not all positive. Thus | ¢ | > 1.

Suppose |b| = |c|. If ¢ = — b then {<a, b)) L {c) is isotropic over Q,
a contradiction. If b = ¢ then {{a, b)) L {(b> is not isotropic over Q.
Then Proposition 1.4 implies {<b,b>> L <{a) = {{1,b>> 1L {(a) is not
isotropic over Q. But 1 + |b| +]a| <]a|+|b] +|c| and a, b are not
both positive (since b=c). This contradicts the minimality assumption and
therefore [b| < | c].

Suppose | ¢ | 1s not a prime number and let — ¢ = (—c¢,) (—c,) where
leil, el <lecl. If ¢ <0, we can assume in addition that ¢, c, < 0.
Then {(<a,b>)> 1 {¢;>,i = 1,2, both have at least one of a, b, ¢; negative.
Since |a|+ |b] + ¢ | <]al+|b]+]c], it follows {(a, b)) L {¢;> is
isotropic over Q,i = 1, 2. Then — ¢;, — ¢, € Dy(<<a, b))) by Lemma 1.2 (b)
and — ce Dy(K<a,b))) by Lemma 1.3. This implies <{<a, b)) L <{c) is
isotropic over Q by Lemma 1.2 (b), a contradiction. Therefore | ¢ | is a prime
number.

If |¢c|]=2, then |a|=|b|=1 If a= —1 or b= —1 then
{La, b))y L {c) 1is 1sotropic over Q. If a =b =1, then ¢ = — 2 and
K1, 15> 1L {—=2> is isotropic over Q. These contradictions imply |c| # 2
and therefore | ¢ | is an odd prime.

To finish the proof of the Main Theorem we are reduced to proving
Theorem 1.6:

1.6. THEOREM. Suppose p is an odd prime, a,beZ, and 0 <|al,|b|
< p. Then there exists meZ,0 < |m| < p, suchthat 2mp € Dy(<{<a, b))).

We shall assume Theorem 1.6 has been proved and finish the proof of the
Main Theorem now. We apply Theorem 1.6 with |c| in place of p.
Then there exists me Z,0 < |m| < |c|, such that 2m|c|e Dy(<{<a, b))).
Our minimality assumption implies {{a, b)> L {—|m|) and {{a, b>) L {2}
are both isotropic over Q. Then 2,|m| and hence 2|m]| all lie in
Do({{a, b)»). If a,b > 0 then ¢ < 0 and it must be that — c € Do(<<a, b>>).
If either a < 0 or b < 0 then — 1€ Dgy(<{<a, b)) since {a, b)> L (1) is
isotropic over Q by our minimality assumption. Therefore — c € Do(<<a, b))
in both cases and {{a, b)>)> L {c) is isotropic over Q. This contradicts our
assumption that a counterexample to the Main Theorem exists and finishes
the proof of the Main Theorem.
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Remark. A natural attempt to finish the proof of the Main Theorem
would be a version of Theorem 1.6 where one finds M € Z,0 < [M | < p,
such that Mp € Do({<{a, b))). But according to [Mo], p. 169, one can only

guarantee | M | < /2|ab| < \/2p* = ﬁp. If one could also make M even,

then this result in [Mo] would give a proof of Theorem 1.6.
. c
It remains to prove Theorem 1.6. If p is an odd prime, let (E) be

c p—1
the Legendre symbol: If (c¢,p) = 1, then (;) = + — 1 where ¢ 2

= (-c—> mod p. In the course of proving Theorem 1.6 we will use the following

D
result.

1.7. THEOREM. Let p be an odd prime, p # 5, and let a,b be integers

b
such that (ﬁ) = <—> = 1. Then there exist x,yeZ such that
p p
2 b 2
(B2 - ka5 <
p

We shall assume Theorem 1.7 has been proved and give now the

Proof of Theorem 1.6. 1f {{a, b)) is isotropic over Q then we are done
by Lemma 1.2(a). Now assume {({a, b)) is not isotropic over Q. First
assume at least one of — a, — b, — ab 1s a quadratic residue mod p. Let

oe{— a, — b, — ab} where <f‘f) = 1. There exists B,1 < B < p — 1, such
p .

that p|p> — o and B> — o is even (replace B by p — P if necessary).
Then |B*> —a| < B?+ |a| < p® + p* = 2p>. Therefore, P> — o = 2mp
where 0 < | m| < p and 2mp € Dy({<a, b))).

If p=1mod4 then at least one of — a, — b, — ab is a quadratic

residue mod p since (7> = 1 and p t ab. Now suppose p = 3 mod 4.

Then at least one of — a, — b, — ab is a quadratic residue mod p unless

a b a b
<—> = (—> = 1. Suppose <—> = <—> = 1 and choose x, y as in Theorem 1.7.
p p ' p p

Since p = 3mod4, we have — (ax®>+by?) is a quadratic residue mod p
and hence there exists B, 1 < p < p — 1, such that p| B> + ax?® + by? and
B* + ax® + by® is even. Then |B* + ax? + by?| < P2 + |a| x> + | b| y?
< p® + p(x*+y?) < 2p>.  Therefore, B2 + ax®> + by> = 2mp  where
0 <|m| < pand B> + ax®> + by* € Do(<<a, bDD).
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The proof of Theorem 1.7 is given in the next section. Although we
need Theorem 1.7 only when p = 3 mod 4 we give a complete proof since
very little additional work is required.

§2. THE PROOF OF THEOREM 1.7

In this section p denotes an odd prime number. We begin by recalling
a result about sequences of quadratic residues and nonresidues mod p.

2.1. LeEMMA. The number of pairs (n,n+1) in the set {1,2,..,p — 1}

—1
p p— —_—
such that <ﬁ> =1, (i> = — 1 is equal to P/
b

P 4

Proof. This elementary result is proved completely in [Ha], p. 157-158.
(See also [An], Chapter 10.)

The next two lemmas give a way to count the number of lattice points
(x,y)eZ x Z,x,y > 0, satisfying the conditions of Theorem 1.7.

Let

F(x)={(,B)eZ x Z|o, B> 0,0% + B* < x?}

and let 2(x) = {(o, B) e L (x)] (o, B) = 1}. Let S(x) = | #(x)| and P(x)
= | 2(x)|. (It will be clear from context whether we mean the point
(o, B) or the greatest common divisor of «, f3.)

2.2. LeEMMA. Let R be the set of nonzero squares mod p.
2

(a) The function 9:.@(\/;) — R given by 0(x,y) = 3%modp is an
X

injection.

1
() P(/p) <5 (0—1)

1
Proof. Clearly (a) implies (b) since | R | = 5 (p—1). If (a) is false then there

Y

exist two distinct points (x,, y4), (x5, y,) in 9(\/1-9) such that — = =3
X1 X2

| Then yix3 — x1y3 = (¥1X2+x1¥3) (V1% —X1),) = 0 mod p. We have y;x,
| )

. + x,y, # 0 since x;, y; > 0 and y;x, — xyy, # 0 otherwise 122 and
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then the points (x,, ¥;), (x5, y,) would be equal since (x;,y;) = 1, i = 1, 2.
We have

(X1+y 1) (xz'f‘J’z) (x1x2+J’1J72) + (Y1 x,— 361)”2)2
= (X1 X3 —Y1V2)* + (1x3+%112) .

Either (y,x,—xX,y,)? or (y;x,+x,y,)* is > p? since both are nonzero and
one of them is divisible by p?. Therefore (x2+y?%) (x3+y3) = p* and then
either x2 + y2 > p or x5 + y3 > p. This is a contradiction since both

(x1, 1) and (x,, y,) lie in ﬂ(ﬁ),
Remark. Although (b) in the preceeding lemma is not needed in what
follows it was included since it gives a fairly good upper bound for

P(\/E) that is valid for all primes. It can be shown using Lemmas 2.4, 2.5

P 3
below (see also [HW], p. 268) that lim WP _ 3 477 1t is unusual

pow D 2T
to obtain, with so little work, such a good estimate that is valid for all
prime numbers.

b
2.3. LEMMA. Assume (_‘E) = (—) =1. Let 1:R—-{0,1, — 1}  where

b 2
() = <u> Then r‘l(——l)l _
p 4
b
. 14+-z*
Proof.  Since (—) = 1, we have 1(z%) = — 1 < ¢ = — 1. Since
p p
b/a : , b
—p— = 1, by Lemma 2.1 this happens if and only if — z? is one of the
a

—1
T (7) B B+1
————— elements B in R such that (—) = ], ( T > — 1. Therefore,

4 D p
—1
p— 7
there are exactly — elements z* in R such that t(z%) = — 1.
2
X a—+ b Xi
, X ax*+ by?
Since ’T = — ]l T = — 1 when p t x, it follows

from Lemmas 2.2, 2.3 that proving Theorem 1.7 is equivalent to finding (x, y)
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e #(,/p) such that to 0(x, y) = — 1. This is equivalent to showing 0(%(/p))
—1
p— _E_
Nt Y(—1) is nonempty. Since 0 is injective, |t (—1)| = —
—1
— 1 . —p— p—1
and |R| = pT’ it is sufficient to show P(\/E) + 1 > 5

Thus to prove Theorem 1.7, we are reduced to showing

(-1) P=3 it p=3mod4
p—|— 4
<

p—1 p)
P(\/p) > =

1
P ifp=1mod4.

4
P(/p)

~ .477. Thus it is clear that for all

As pointed out earlier, lim
p~>o P

P/p) 1 . p—1
> —,1e., P >

» 1 /p) y
we need to check this result for all primes p, p # 5, it is necessary to give
rather careful estimates. We now compute P(x) and compare it to
x? —1

4

 but finitely many primes p we have . Since

4
Let p be the Mobius function: If ne Z,n = [] p§, then
i=1

1 ifn =1
wn) =4 (—1)y ifeache =1
0 if some e; > 1.

Let [ ] denote the greatest integer function.
L)

- 24. LemMA. P(x) = i u(i)s<>%> = _Z u(i) S(?) F

Proof. Since S(\/E) = 0, we have S (£> =01ifi> [*\/x_{l + 1. In order
! 2
;to count how many times each lattice point is counted in the sum

> ou )S(i) we partition the lattice points in &(x) into the rays passing
P =1 l

%through the origin. Let (a, B) € #(x) and consider all multiples (mo, mp)

——F 2N
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that lie in %(x). Let n be the unique positive integer such that (no, np) € &(x)
but ((n+ 1), (n+ 1)B) ¢ L(x). Then for a given positive integer i, we have

. n X
(jo, jB) € & (ZC—) precisely for [2} values of j since 1f ([?] + 1> (o, B e & (7)
1
then z<[2}+ 1) (o, B) € F(x). But z<[ﬁ}+ 1) > n + 1. Therefore exactly
i I

X :
[E} points on the ray through (o, B) lie in & <T> It follows that in the
i

sum to be evaluated, the points on the ray through (o, ) contribute

i w(i) F} = 1. To prove this last equality we start with the well known fact
i=1 l

5 1) = {1 ifm=1 . _ S Y ul) = Z u(i)[f} since [ﬂ is

0 ifm> 1. m=1 i[m l
the number of multiples of i that are < n. Therefore the sum to be
evaluated counts the number of points in 2(x) and this completes the proof.

T T
2.5. LemMA. Forall x > I,sz —2x + 1 < 8(x) < sz.

Proof. To each point (a, B) € ¥(x) associate the lattice square for which
(o, B) 1s the lower left corner. Let M, denote the region covered by these
squares. Then S(x) = area of M,. Let M,, M5 be the two strips of length x,
width 1, parallel to the axes where M, = {(x;,y,)|0 < x; < x,0 < y, < 1},
and M; = {(x;,)10<x; <1,0<y, <x}. When x > 1, these strips
cover a combined area of 2x — 1. Since the quarter circle of radius x

is contained in M, U M, U M, it follows %xz < S() + 2x — 1.

Now to each point (a, B) in &(x) associate the lattice square for which
(o, B) is the upper right cornmer. These lattice squares lic entirely in the

first quadrant and inside the circle of radius x. Therefore S(x) < %xz.

26. LEMMA. Let m >n > 1,mneZ. Then

1 1 1 1 1

T
) 2 T S T

m

: 1
Proof. Apply the integral test to j =z dt or observe

n
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We now use Lemmas 2.4, 2.5 to estimate P(x). We need to determine

¥ —~1

. First assume x > 10. Then x > 7

/2

values of x for which P(x) >

50 [—\xﬁ] > 7.

. b
PL) = 3. uli)S G) SNTOR (3:—)

i=1

o) o) o) o) 3

T T /x\? w/x\? w/x\?
S{ox2—2x+1)—=(Z) —Z(Z) —Z(=
() -30G) -56) 56
() (B er) el 4
4 \6 6 g7\ T [x]z
J2
T, 111 1 1 1 1
- ————— —t———a4 ==\ 2x| 14+—] + 2 (by Lemma 2.6
~ 4" 49 25736 6+[x] " 7% (by )
J2
T, 46 T 5 1 7
e (2N e N L 2
4x(100>+4x [x} 3 X
J2
23 2 7 . 2
>ﬁx2+<\/4‘n_§>x+2,smce > 2\/§x.’

Al

2 7 2 ]
Let f(x) = 2—3Ex2 + (Jn — —)x + 2, 9(x) = al 1 . One can check

200 4 3
that f(10) > ¢(10), f(10) > ¢'(10), f"(10) > ¢"(10). Therefore P(x) > f(x)
p—1

if > 10, 1e,
3 1 p 1.e

> g(x) for all x > 10. This implies P(/p) >

p—1

p > 100. It remains to show P(,/p) > if p < 100, p # 5.
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At this point we simply count lattice points directly and construct the

—1
P for all primes p < 100 except

table below. The table shows P(\/;)) >

p = 5. This completes the proof of Theorem 1.7 and hence the Main
Theorem has been proved completely.

Range of primes

p P(\/E) where P(\/;)) > P 1 !
59 27 59<p <97
31 15 31 <p <353
19 9 19<p <29
11 5 11<p<g17
7 3 p =7
3 1 p=3
5 1 pe2—1
* 4

§ 3. (CONSEQUENCES OF THE MAIN THEOREM

In this section we derive some consequences of the Main Theorem that
have applications to the algebraic theory of quadratic forms. The results in this
section are well known ([La], Chapter 6). The point is that we have new
and more elementary proofs.

Let {{a, b, c>) denote the 3-fold Pfister form

Qyay @ L,by @ {1,¢c) = <1,a,b,c,ab, ac, bc, abc) .

3.1. PRrOPOSITION. Let a,b,ceQ*. Then <{{a,b,c)) is hyperbolic
over Q ifand only if a,b,c are not all positive.

Proof. 1f X{a, b, c)) is hyperbolic, then consideration of {(<{a, b, ¢>> over
the field of real numbers shows at least one of a, b, ¢ is negative.

Now suppose a < 0. Then the Main Theorem implies — ¢ € Dy({<a, b))
and (<a, b)) L {c) is isotropic over Q by Lemma 12(b). A theorem of
Pfister ([La], p. 279] implies (<a, b, ¢)» is hyperbolic over Q.
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3.2. PRrROPOSITION. Let a,b,ceQ”,a,b,c > 0. Then

a,b,cy) = KL L 1)) = &1).
Proof. Calculating in the Witt ring W F we have

a, b, 1)) L(=1)a,b,cy) = a, b)) (K1, 1) L (=1)<1,¢))
= {a, b)) {1, —c) = {a, b, —c)) = 0 by Proposition 3.1.

Therefore {{a, b, 1>> = {({a, b, ¢)). Repeating the same calculation with a, b
in place of ¢ yields the result.

3.3. CoOROLLARY. Let a,b,ceQ” andlet H = {1, —1>. Then

KL 1L, 1)) ifabc>0
4H otherwise .

Ka, b, c)) = {

3.4. THEOREM. I°Q is torsion-free.

Proof. Corollary 3.3 shows that the only nonzero 3-fold Pfister form
in I°Q is ({1, 1, 1>>. Therefore I°Q = Z and I°Q is torsion-free.
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