
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 35 (1989)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: CONTRIBUTION À L'ÉTUDE D'UNE CONJECTURE DE THÉORIE
DES NOMBRES PAR LE CODAGE ZBV

Autor: Grigorieff, Serge / Richard, Denis

Kapitel: §9. DÉFINISSABILITÉ PAR SUCCESSEUR, COPRIMARITÉ ET
RESTRICTIONS DE L'ADDITION, DE LA MULTIPLICATION OU DE LA
DIVISION

DOI: https://doi.org/10.5169/seals-57370

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-57370
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


CODAGE ZBV 181

Puisque p 5 (mod 8), l'entier p — 1 est de la forme p — 1 4(2/c+l).

Puisque ORD (x, p) divise toujours p — 1, l'équivalence (1) devient alors

(2) (x, p) g RES si et seulement si 4 ne divise pas ORD (x, p).

Le point ii) du Corollaire 2.4 du Théorème ZBV montre que (2) peut aussi

s'écrire

(3) (x, p) g RES si et seulement si SUPP (x4— 1) £ SUPP [xORD(x,p)— 1].

Ceci prouve l'égalité

(4) C n RES {(x, p) g C: SUPP (x4 -1) £ SUPP [xORD(*'p)-1]}.
Les résultats de 8.2 et 8.3 permettent alors de traduire cette égalité en une

définition de la relation C n RES dans le langage (S; 1, PUIS).
Ceci achève la preuve de la Proposition 8.1 et donc du Théorème 8.1.

8.6. Problème ouvert. Peut-on remplacer dans le Théorème 8.1 le prédicat
PUIS par la relation y x2l

§ 9. Définissabilité par successeur, coprimarité
ET RESTRICTIONS DE L'ADDITION, DE LA MULTIPLICATION OU DE LA DIVISION

9.1. Nous allons maintenant donner les prédicats les plus faibles que nous
connaissions qui, joints au successeur et à la coprimarité, permettent de
définir toute l'arithmétique.

Si X ç= N2, on note A-ADD et A-MULT les graphes des restrictions de

l'addition et de la multiplication à A :

A-ADD {(x, y, z) : (x, y) e X et z x + y}

A-MULT {(x, y, z) : (x, y) e X et z xy}

Dans toute la suite, la première projection de X sera toujours égale à N
tout entier. La relation d'égalité se définit alors facilement dans le langage
réduit au seul prédicat A-ADD (resp. A-MULT): x - xr si et seulement si

{(p, y) : (x, p, y) e X-ADD} {(p, y) : (x', p, y) e X-ADD}
Les fonctions S et Pred sont donc définissables l'une à partir de l'autre
avec A-ADD ou X-MULT.

Théorème. Soit XSN2 une relation définissable dans la structure
<N ; + x ; et vérifiant la condition :

(*) pour tout x il existe une infinité d'entiers primaires v tels que (x, v) e X.
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Les trois structures <N ; S ; 1, X-ADD>, <N ; S ; _L, X-MULT) et

<N ; + x ; définissent alors les mêmes relations et fonctions.

Preuve. Soit a {(x, v, p) : (x, v) g X, v est primaire, p premier, p divise

x + v}. Le Corollaire 2.8 assure que l'égalité x y équivaut à la condition

SUPP (x +1) SUPP (y +1) pour une infinité d'entiers t.

L'hypothèse faite sur X permet donc d'assurer que x y équivaut à

{p: (x, v, p)ea}v, p) e a}

Ceci donne une définition de la relation d'égalité dans la structure <N ; 1, a).
Comme a est incluse dans N x PP x P, le Théorème 6.2 montre alors que
+ et x sont aussi définissables dans la structure <N; S, Pred; _L, a).

Par ailleurs, l'égalité

a {(x, v, p) : il existe s tel que (x, v, s) g X-ADD et q g SUPP (s)}

montre que la relation a est définissable dans (N; S; _L, X-ADD). Comme
Pred est définissable à partir de S et X-ADD, ceci prouve que + et x
sont aussi définissables dans <N ; S ; _L, X-ADD).

En ce qui concerne la structure <N;S; JL,X-MULT>, on introduit la

relation

7i {(x, F, p) : (x, v) g X, v est primaire, p premier, p divise xv + 1}

On raisonne alors de façon analogue en se servant du Corollaire 2 de 2.6

qui assure l'équivalence entre l'égalité x y et la condition

SUPP (x) SUPP (y) et, pour une infinité d'entiers t,

SUPP (£x+ 1) SUPP (ty+ 1).

Remarque. Considérons le cas où X _L {(x, y) : x et y sont premiers

entre eux}. On observe que l'ensemble {1} et la relation 1 se définissent

très simplement dans la structure <N ; | > (où | est le prédicat de divisibilité)

par les formules

V£ (x|£) et Vz [[(z|x) a (z|y)] -> (z= 1)]

Par ailleurs, la relation _L-MULT se confond avec le graphe de la fonction

ppcm restreinte à cet ensemble _L et se définit donc aussi dans la structure

<N;|>. On voit ainsi que le Théorème précédent contient le résultat de

J. Robinson (cf. 4.5) selon lequel addition et multiplication sont (S;
Indéfinissables.
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9.2. On obtient ci-dessous un renforcement important du Théorème 9.1.

Théorème. Il existe une fonction f, définissable dans la structure

<N;S;±> (resp. <N; Pred; 1 de domaine N et à valeurs dans

l'ensemble des entiers premiers, et pour laquelle la propriété suivante est vraie.

Si X £ N2 est définissable dans la structure <N ; + x ; et telle que

(**) pour tout x il existe un entier primaire v tel que v ^ f(x) et (x, v) e X

alors les trois structures <N ; S ; _L X-ADD), <N ; S ; _L, A-MULT) et

<N; + x ; > définissent les mêmes relations et fonctions.

Preuve. 1°) L'argument développé ci-dessous reprend la preuve du

Corollaire 1 du Théorème de Stürmer (cf. 2.6) en montrant que les notions
introduites sont définissables dans les langages (S ; _L) et (Pred ; _L).

Notons E et E' les ensembles

E {(x, q) e N x P : il existe u, v tels que u ={0> 1}x et v ={0> 1}x

et u # v et q g SUPP (\u —1>|)}

E' {(x, y)e N2 : SUPP [y(y + 1)] ç= {q : (x, q) e E}}

D'après le Théorème de Stürmer (cf. 2.6), l'ensemble {y : (x, y) e E'} est fini
pour tout entier x. Soit N(x) le plus grand élément de {y : (x, y) e E'}.
On définit la fonction / comme suit :

/(x) le plus petit entier premier supérieur à N(x).

Les relations E, E' sont clairement saturées pour l'équivalence ={0,1}. La
définition de la fonction / à partir de E', et le fait qu'elle soit à valeurs
dans les premiers, montre que son graphe est aussi saturé pour ={0, i}-
Le Théorème 4.10 assure alors que / est définissable dans <N;S;_L>.
2°) La preuve du Corollaire 1 de 2.6 (appliquée avec l'ensemble fini
{u: u ={0 1}x} comme ensemble A) montre que les trois conditions suivantes
sont équivalentes :

i) x y

Ü) * {o, i}3> et SUPP (x -f m) - SUPP (y + m) et SUPP (x + m +1)
SUPP (j; + ra+ 1)} pour un m ^ /(x),

iii) x ={0 1}j/ et SUPP (rax + 1) SUPP (my + 1) pour un m ^ /(x).
Posons, de façon semblable à ce qui a été fait plus haut,

a ~ {(x, v, p) : (x, v)eX,v est primaire, p premier, p divise x + v}
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& {(x, v, p): (x, v)eX,v est primaire, p premier, p divise x + v + 1},
n {(x, v, p) : (x, v) e X, v est primaire, p premier, p divise xv + !}•

L'hypothèse faite sur X permet de traduire les conditions ii) et iii) en
des définitions de la relation d'égalité dans les structures <N; _L, er, cr')
et <N;_L,7i). Commme a, a' et n sont incluses dans N x PP x P,
le Théorème 6.2 montre que + et x sont aussi définissables dans

<N; S, Pred; _L, a, a') et <N; S, Pred; _L, n). On achève la preuve, commme
précédemment, en observant a et a' sont définissables à partir de S et

X-ADD, et que n l'est à partir de S et X-MULT.

3°) Pour obtenir une fonction / ayant la même propriété et définissable

avec Pred et 1, on remplace ={0> 1} par {_i,0} dans la définition de E,

et le produit y(y +1) par y(y — 1) dans la définition de E'.

On raisonne enfin à l'aide de la condition iii)bis suivante du Corollaire 1

de 2.6:

iii)bis x ={-1,0}^ et SUPP(mx —1) SUPP(my—1) pour un m ^ /(x).

9.3. Nous considérons maintenant des prédicats qui sont des affaiblissements
de la division euclidienne.

Avant de prouver le Théorème 9.4 ci-dessous, dont le Théorème de Woods
cité en 4.6 est corollaire, nous mentionnons d'abord un fait simple.

Proposition. Pour tout entier premier n, la fonction z i— Reste (z, n%

de domaine N est définissable dans les structures

<N; S; _L> et <N;Pred;l>.
Preuve. La relation y Reste (x, tu) est équivalente à chacune des

conditions :

[y 0 et 7t|x] ou [y 1 et 7i|S,7r_1(x)] ou ou [_y n— 1 et rc|S(x)]

et

[y 0 et 7i|x] ou [y= 1 et x^l et 7i|Pred(x)] ou
ou [y 7i — l et x ^ 71 — 1 et 7i|Pred7r_1(x)]

Comme n | z s'écrit —i (7c _Lz) et que les singletons sont définissables dans les

langages (S, J_) et (Pred, _L) (cf. 5.4 et 5.6), ces conditions se traduisent
dans ces langages.

9.4. Rappelons que Quot et Reste désignent les fonnctions quotient et

reste de la division euclidienne.
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Soit a ^ 2; on note Quot« et Restea les graphes des fonctions partielles

(x, p) i—> Reste (Quot (x, p), a) et (x, p) \-> Reste (Reste (x, p), a)

de domaine [N\{0}] x [P\{a}].

Remarque. 1°) Ces fonctions sont une vue modulo un entier fixé de la

restriction de la division au cas des diviseurs premiers ; elles sont évidemment

définissables à partir des fonctions Quot et Reste.

2°) En contraste avec le théorème ci-dessous, les graphes des fonctions

(x, y) i— Reste (x + y, a) et (x, y) i— Reste (xy, a), de domaine N\{0}] x N, sont
définissables dans les langages (.S, _L) et (Pred, _L).

Ceci résulte de la Proposition 9.3, du calcul évident du reste de la somme
et d'un produit, et de ce que les graphes de + et x restreintes à

{0,..., a — l}2 sont définissables dans (S, _L) et (Pred, ±).

Théorème. Soit a ^ 3. Les structures

<N ; S ; 1, Quota> <N ; Pred ; J_, Quota> <N ; Pred ; 1, Restea>

et <N ; + x ; >

définissent les mêmes relations et fonctions.

Preuve. Les conditions ii)a et iii)a de la Proposition 2.14 montrent que
l'égalité x y équivaut à chacune des conditions

(*) x et y ont même parité et Reste«(x, p) Reste«(y, p) pour tout
premier p / a;.

(**) x et y ont même parité et Quota(x, p) Quota(y, p) pour tout
premier p / a.

Comme l'égalité restreinte à l'ensemble fini fixé (0,... a — 1} (dans lequel les
fonctions Quota et Reste« prennent leurs valeurs) est définissable dans chacun
des langages (5, 1) et (Pred, 1) (cf. Remarque 5.5), on voit que la condition (*)
(resp. (**)) se traduit dans les langages (S; ±, Quot«) et (S ; _L, Reste«)
(resp. (Pred ; 1, Quot«) et (Pred ; 1, Reste«)).

Comme Quot« et Reste« sont inclus dans N x P x {0,..., oc - 1}, on conclut
grâce au Théorème 6.2.

Corollaire (Woods). Les structures <N; < _L> et <(N; + x ;

définissent les mêmes relations et fonctions.
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Preuve. Si p est premier et x ^ 0, le nombre pQuot (x, p) est le plus
grand entier divisible par p et inférieur ou égal à x. Ainsi, la fonction
(x, p) h-» pQuot (x, p), de domaine [N\{0}] x P est définissable dans la
structure <N; S, < _L>. Par ailleurs, pour p ^ 3, Quot3(x, p) vaut

Reste (pQuot (x, p), 3) si 3 divise p — 1,

Reste [2 x Reste (pQuot (x, p), 3), 3] si 3 divise p — 2

La Proposition 9.3 montre alors que la fonction Quot3 est définissable avec

< S et JL.

Comme < définit trivialement S et l'égalité, le langage (S,Pred, < JL)

se ramène au langage < _L).

Problèmes. 1°) Le Théorème 9.4 est-il vrai pour a 2?

2°) La restriction de l'ordre < à N x P suffit-elle, avec S et X, à définir

+ et x Une réponse positive est conséquence (par réduction immédiate

au Corollaire ci-dessus) de la conjecture suivante d'Erdös: si x < y et

x ={0,1}y alors il existe un premier entre x et y.

§ 10. Conclusion

10.1. Quelques perspectives

Une stratégie possible pour résoudre la conjecture d'Erdös-Woods pourrait
être de définir la fonction exponentielle dans le langage avec S, _L et la

fonction carré, puis de définir la fonction carré avec S et _L.

Une autre voie pourrait consister à déterminer, pour chaque entier x
le support d'un entier x + v éloigné de x.

On voit bien que la difficulté réside dans les liens cachés entre l'addition
et le produit (ici la coprimarité). C'est ce qu'avaient remarqué
certains théoriciens des modèles (par exemple, A. Ehrenfeucht et D. Jensen

(cf. [EA & JD]) à propos de la reconstruction des modèles de l'arithmétique

par amalgamation de structures additives et multiplicatives. Ce n'est d'ailleurs

pas sans raison que ces derniers auteurs sont demandeurs de langages formés

de deux ou trois prédicats (à l'exclusion de l'addition et la multiplication,
bien évidemment) qui permettent de redéfinir l'arithmétique du premier ordre.
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