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RRES = RES n N x [8N+75]

= {(x,p)eN x P:p=5(mod8) et x est residu quadratique
modulo p}

L’intérét de restreindre RES a 8N + 5 tient a ce que ¢ — 1 est de la forme
42k + 1) lorsque g est lui-méme de la forme 8k + 5.
Le Corollaire 7.3 précédent s’adapte simplement:

THEOREME. Les structures <{N;S; L, RRES), (N; Pred; L, RRES) et
(N; +, x; =) définissent les mémes relations et fonctions.

Preuve. En changeant, dans la preuve du Lemme 2.13, ’équation
z=1(mod4) en z = 5(mod 8), on peut supposer que l'entier premier ¢
obtenu dans ce lemme satisfait I’équation g = 5 (mod 8).

Ceci permet alors de remplacer RES par RRES dans la traduction utilisée
dans la preuve de la Proposition 7.3.

§ 8. DEFINISSABILITE PAR SUCCESSEUR, COPRIMARITE
ET LA RELATION BINAIRE « y EST UNE PUISSANCE DE X »

8.1. Nous considérons maintenant la relation binaire
PUIS = {(x, y): il existe n > 1 tel que y = x"}.

Remarquons que la relation d’égalité se définit facilement dans le langage
réduit au seul prédicat PUIS par la formule PUIS (x, y) A PUIS(y, x).

Les fonctions S et Pred sont donc définissables I'une a partir de lautre
avec PUIS.

THEOREME. Les deux structures (N;S; L, PUISY et (N;+, x; =)
définissent les mémes relations et fonctions.

Remarque. Bien siir, le Théoréme 6.2 n’est pas directement applicable
car PUIS n’est pas — a priori — quasi-saturé pour un = .
Ce Théoreme est un corollaire immédiat du Théoréme 7.4 et de la

Proposition suivante, dont la preuve est 'objet des alinéas 8.2 a 8.5
ci-dessous.
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ProrosITION.  La relation RRES est définissable dans {(IN;S; L, PUIS).

8.2. Le Corollaire 2.4 (point ii) du Théoréme ZBV montre que I’égalité
y = x? équivaut a la condition

(*) x=y=0 ou x=y=1 ou bien y est une puissance de x et
y # x et SUPP (y—1) = SUPP (x*—1).

Comme SUPP (x*—1) = SUPP(x+1) u SUPP (x—1), on peut exprimer
dans le langage (S, Pred; L) la relation SUPP (y—1) = SUPP (x*—1).

Comme Pred est exprimable avec S et PUIS, on voit que (*) donne une
définition de la fonction x — x? dans le langage (S; L, PUIS).

8.3. Si p est premier et ne divise pas x, nous notons ORD (x, p) ordre de x
modulo p.

Rappelons que x* = xORP&™P i et seulement si p est diviseur pri-
mitif de x* — 1. La caractérisation donnée par le point 11) du Corol-
laire 2.4 de la notion de diviseur primitif donne alors une définition de la
- fonction (x, p) — xO"P* P2 gqur le domaine {(x,p): x > 2, p est premier et
ne divise pas x} dans le langage (Pred; =, L, PUIS) et donc aussi dans
(S; L, PUIS).

8.4. Soient A et B les relations suivantes:
A = {(x, p): p est premier et divise x, ou x < 1},
B = {(x,p): x = 2, p est premier et ne divise pas x, et p = 5 (mod 8§)}.
On observe que I'on a I’égalité
RRES = [AN[Nx(Pn8N+5)]] u [BARES].

La relation A est évidemment (S; 1)-définissable, 'ensemble P n 8N + 5,
inclus dans P, 'est aussi (Théoreme 4.8 ou 4.9). Ainsi, le premier terme de
cette union est (S; L)-définissable.

Le méme argument montre que la relation B est (S; L)-définissable.

8.5. Nous montrons que B n RES est (S; L, PUIS)-définissable.
Soit (x, p) dans B, le critéere d’Euler sur les résidus quadratiques montre que

(1)  (x,p)eRES sietseulementsi x®~ 1?2 = 1 (mod p)
si et seulement si  ORD (x, p) divise (p—1)/2.
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Puisque p = 5(mod 8), Tentier p — 1 est de la forme p — 1 = 4(2k+1).
Puisque ORD (x, p) divise toujours p — 1, I'équivalence (1) devient alors
(2) (x, p) € RES si et seulement si 4 ne divise pas ORD (x, p).

Le point ii) du Corollaire 2.4 du Théoréme ZBV montre que (2) peut aussi
s’écrire

(3) (x,p)e RES si et seulement si SUPP (x*—1) & SUPP [x°*P&P 17
Ceci prouve I'égalité

4) CnRES = {(x,p) e C: SUPP (x*—1) & SUPP [xORPP _17},

Les résultats de 8.2 et 8.3 permettent alors de traduire cette égalité en une

définition de la relation C » RES dans le langage (S; L, PUIS).
Ceci acheéve la preuve de la Proposition 8.1 et donc du Théoreme 8.1.

8.6. Probléeme ouvert. Peut-on remplacer dans le Théoréme 8.1 le prédicat
PUIS par la relation y = x*?

§ 9. DEFINISSABILITE PAR SUCCESSEUR, COPRIMARITE
ET RESTRICTIONS DE L’ADDITION, DE LA MULTIPLICATION OU DE LA DIVISION

9.1. Nous allons maintenant donner les prédicats les plus faibles que nous
connaissions qui, joints au successeur et a la coprimarité, permettent de
définir toute I'arithmétique.

Si X = N?, on note X-ADD et X-MULT les graphes des restrictions de
I'addition et de la multiplication a X :

X-ADD = {(x,y,2):(x,y)eX et z=x+y}.
X-MULT = {(x,y,2):(x,y)e X et 2z = xy}.

Dans toute la suite, la premiére projection de X sera toujours égale @ N
tout entier. La relation d’égalite se définit alors facilement dans le langage
reduit au seul prédicat X-ADD (resp. X-MULT): x = x’ si et seulement si

{(p y): (x, p, y) € X-ADD} = {(p, y): (¥, p, y) € X-ADD} .

Les fonctions S et Pred sont donc définissables I'une a partir de autre
avec X-ADD ou X-MULT.

THEOREME. Soit X = N? une relation définissable dans la structure
(N; 4+, x; =) etvérifiant la condition:

(*) pour tout x il existe une infinité d’entiers primaires v tels que (x, v) € X.
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