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RRES RESnN x [8N + 5]

{(x, p) e N x P: p 5 (mod 8) et x est résidu quadratique
modulo p}

L'intérêt de restreindre RES à 8N -f 5 tient à ce que q — 1 est de la forme

4(2/c+1) lorsque q est lui-même de la forme 8/c + 5.

Le Corollaire 7.3 précédent s'adapte simplement :

Théorème. Les structures <N ; S ; 1, RRES), <N ; Pred ; _L, RRES) et

<N ; + x ; > définissent les mêmes relations et fonctions.

Preuve. En changeant, dans la preuve du Lemme 2.13, l'équation
z 1 (mod 4) en z 5 (mod 8), on peut supposer que l'entier premier q

obtenu dans ce lemme satisfait l'équation q 5 (mod 8).

Ceci permet alors de remplacer RES par RRES dans la traduction utilisée

dans la preuve de la Proposition 7.3.

§ 8. Définissabilité par successeur, coprimarité
ET LA RELATION BINAIRE « y EST UNE PUISSANCE DE X »

8.1. Nous considérons maintenant la relation binaire

PUIS {(x, y) : il existe n ^ 1 tel que y x"}

Remarquons que la relation d'égalité se définit facilement dans le langage
réduit au seul prédicat PUIS par la formule PUIS (x, y) a PUIS (y, x).

Les fonctions S et Pred sont donc définissables l'une à partir de l'autre
avec PUIS.

Théorème. Les deux structures <N; S; 2_, PUIS) et <N; + x ; =>
définissent les mêmes relations et fonctions.

Remarque. Bien sûr, le Théorème 6.2 n'est pas directement applicable
car PUIS n'est pas — a priori — quasi-saturé pour un =A.

Ce Théorème est un corollaire immédiat du Théorème 7.4 et de la
Proposition suivante, dont la preuve est l'objet des alinéas 8.2 à 8.5
ci-dessous.
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Proposition. La relation RRES est définissable dans <N ; S ; J_, PUIS).

8.2. Le Corollaire 2.4 (point ii) du Théorème ZBY montre que l'égalité

y x2 équivaut à la condition

(*) x y 0 ou x y 1 ou bien y est une puissance de x et

.y ^ x et SUPP (y — 1) SUPP (x2 — 1).

Comme SUPP (x2 — 1) SUPP (x +1) u SUPP (x — 1), on peut exprimer
dans le langage (S, Pred; _L) la relation SUPP (y— 1) SUPP(x2 —1).

Comme Pred est exprimable avec S et PUIS, on voit que (*) donne une
définition de la fonction x i—> x2 dans le langage (S ; _L, PUIS).

8.3. Si p est premier et ne divise pas x, nous notons ORD (x, p) l'ordre de x
modulo p.

Rappelons que xa xORD(*'p) si et seulement si p est diviseur
primitif de xa — 1. La caractérisation donnée par le point iii) du Corollaire

2.4 de la notion de diviseur primitif donne alors une définition de la
fonction (x, p) i— xORD(x'p) sur le domaine {(x, p) : x ^ 2, p est premier et

ne divise pas x} dans le langage (Pred ; _L, PUIS) et donc aussi dans

(S ; 1, PUIS).

8.4. Soient A et B les relations suivantes :

A {(x, p): p est premier et divise x, ou x ^ 1}

B {(x, p) : x ^ 2, p est premier et ne divise pas x, et p 5 (mod 8)}

On observe que l'on a l'égalité

RRES [An[N x (Pn8N + 5)]] u \BnRES]

La relation A est évidemment (,S ; _L)-définissable, l'ensemble P n 8N + 5,

inclus dans P, l'est aussi (Théorème 4.8 ou 4.9). Ainsi, le premier terme de

cette union est (S ; Indéfinissable.
Le même argument montre que la relation B est (S ; _L)-définissable.

8.5. Nous montrons que B n RES est (5; _L, PUIS)-définissable.
Soit (x, p) dans B, le critère d'Euler sur les résidus quadratiques montre que

(1) (x, p) g RES si et seulement si xip~1)/2 1 (mod p)

si et seulement si ORD (x, p) divise (p—1)/2



CODAGE ZBV 181

Puisque p 5 (mod 8), l'entier p — 1 est de la forme p — 1 4(2/c+l).

Puisque ORD (x, p) divise toujours p — 1, l'équivalence (1) devient alors

(2) (x, p) g RES si et seulement si 4 ne divise pas ORD (x, p).

Le point ii) du Corollaire 2.4 du Théorème ZBV montre que (2) peut aussi

s'écrire

(3) (x, p) g RES si et seulement si SUPP (x4— 1) £ SUPP [xORD(x,p)— 1].

Ceci prouve l'égalité

(4) C n RES {(x, p) g C: SUPP (x4 -1) £ SUPP [xORD(*'p)-1]}.
Les résultats de 8.2 et 8.3 permettent alors de traduire cette égalité en une

définition de la relation C n RES dans le langage (S; 1, PUIS).
Ceci achève la preuve de la Proposition 8.1 et donc du Théorème 8.1.

8.6. Problème ouvert. Peut-on remplacer dans le Théorème 8.1 le prédicat
PUIS par la relation y x2l

§ 9. Définissabilité par successeur, coprimarité
ET RESTRICTIONS DE L'ADDITION, DE LA MULTIPLICATION OU DE LA DIVISION

9.1. Nous allons maintenant donner les prédicats les plus faibles que nous
connaissions qui, joints au successeur et à la coprimarité, permettent de
définir toute l'arithmétique.

Si X ç= N2, on note A-ADD et A-MULT les graphes des restrictions de

l'addition et de la multiplication à A :

A-ADD {(x, y, z) : (x, y) e X et z x + y}

A-MULT {(x, y, z) : (x, y) e X et z xy}

Dans toute la suite, la première projection de X sera toujours égale à N
tout entier. La relation d'égalité se définit alors facilement dans le langage
réduit au seul prédicat A-ADD (resp. A-MULT): x - xr si et seulement si

{(p, y) : (x, p, y) e X-ADD} {(p, y) : (x', p, y) e X-ADD}
Les fonctions S et Pred sont donc définissables l'une à partir de l'autre
avec A-ADD ou X-MULT.

Théorème. Soit XSN2 une relation définissable dans la structure
<N ; + x ; et vérifiant la condition :

(*) pour tout x il existe une infinité d'entiers primaires v tels que (x, v) e X.
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