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V[F . A LA#x+] A [AG#y+)] A [N\ (y=x+k)]

iel, jedy keKy
A LA (x=y+1)]]
IeL,
ou F, est une formule ne faisant pas intervenir I'égalité.

Si K, ou L, contient plus d’un élément alors la clause associée a «
est impossible et peut donc étre supprimée. Si L, n’est pas vide ou si
K, contient 0 alors la clause associée a o contredit la condition x <y
et peut donc étre supprimée. Si K, = {k}, k = 1, alors la sous-formule
Vv = x + k implique x < y; ainsi, la clause associée a o peut, toute entiere,
étre remplacée par y = x + k.

Ceci permet de définir x < y sous la forme suivante:

[Vy=x+k] v VIFLG)) a TAG#x+D] A LA G2y +i).

1A iel, JjeJy

Soit M le supremum des éléments des J,.

Puisque la clause associée a o implique x < y, on voit que F(x, y) implique

(x<» v [V=x+i)]v [V(=y+j)]], qui implique aussi x < y + M.

isl, Jjedy

St F(x. y) est la disjonction des F,(x, y), on voit donc que

x<y=Fxyy=x<y+ M,

doux = y=F(x,v+1) A F(y,x+1)= |

VIS M+ 1

Le point iii) du Theoreme 2.11 permet alors de conclure que I'égalité x = y
est definie par la formule F(x, y+1) A F(y, x+1) A E(x, y) ot E(x, y) est la
formule. écrite avec S et L qui définit la relation x =0, ..u) ou k est
un premier supérieur a M.

§ 7. DEFINISSABILITE PAR SUCCESSEUR, COPRIMARITE
ET RESIDUATION QUADRATIQUE

7.1. Deésignons par RES et T les relations binaires

RES = {(x.p)eN x P: x est résidu quadratique modulo le premier P},

I'={(x,p)eN x P: - x est impair et Iexposant (peut-€tre nul) du
premier p dans la décomposition primaire de x est
pair} .

Le Théoreme de Stgrmer (cf. Corollaire 2.5, point ii) se traduit par le
lemme suivant:
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LEMME. L’égalité des entiers impairs x et y équivaut da la condition
suivante (ou € vaut, au choix, 1 ou bien — 1):

SUPP(x) = SUPP(y) et SUPP(x+2¢) = SUPP(y+2¢) et, pour
tout p premier et tout i€ {0,2}, les couples (x+¢ei,p) et (y+é&i,p)
sont simultanément dans T ou hors de T.

7.2. THEOREME. Les structures <{(N;S;L,T>, {(N;Pred; L, T> et
(N; +, x; =) définissent les mémes relations et fonctions.

Preuve. Le Lemme 7.1 fournit des définitions dans les langages
(Pred; L, T) et (S; L, T) de la relation d’égalité restreinte aux entiers
impairs. On en déduit simplement des définitions dans ces langages de la
relation d’égalité tout entiére. On conclut enfin en appliquant le Théoreme 6.2
puisque, la seconde variable de T variant dans P, la relation T est quasi-sature
(cf. Exemple 6.1).

7.3. Nous allons maintenant définir la relation T dans le langage (S; L, RES).

PrOPOSITION. La relation T  est définissable dans les structures
(N;S; 1L,RES) et (N;Pred; L, RES).

Preuve. Soient x un entier impair difféerent de 1 et p un diviseur
premier de x. Le Lemme 2.13 montre que l'exposant de p dans x est pair
si et seulement s’il existe un entier premier g ne divisant pas x et tel que
les conditions suivantes soient simultanément satisfaites:

(et e B« ()

pour tout  p’ € SUPP (x)\{p} .

Comme [Pégalité sur les premiers s’exprime dans les langages (Pred; 1)
et (S; L) (cf. 5.5) cette caractérisation sécrit dans (Pred; L, T, RES) et
dans (S; L, T, RES).

COROLLAIRE. Les structures <(N;S; L,RES), (N;Pred; L, RES) et
(N; +, x; =) définissent les mémes relations et fonctions.

7.4. L analyse de la preuve précédente et de celle du Lemme 2.3 suggere
qu'on peut remplacer RES par diverses restrictions. Nous utiliserons au § 8
la restriction suivante de la relation RES:
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RRES = RES n N x [8N+75]

= {(x,p)eN x P:p=5(mod8) et x est residu quadratique
modulo p}

L’intérét de restreindre RES a 8N + 5 tient a ce que ¢ — 1 est de la forme
42k + 1) lorsque g est lui-méme de la forme 8k + 5.
Le Corollaire 7.3 précédent s’adapte simplement:

THEOREME. Les structures <{N;S; L, RRES), (N; Pred; L, RRES) et
(N; +, x; =) définissent les mémes relations et fonctions.

Preuve. En changeant, dans la preuve du Lemme 2.13, ’équation
z=1(mod4) en z = 5(mod 8), on peut supposer que l'entier premier ¢
obtenu dans ce lemme satisfait I’équation g = 5 (mod 8).

Ceci permet alors de remplacer RES par RRES dans la traduction utilisée
dans la preuve de la Proposition 7.3.

§ 8. DEFINISSABILITE PAR SUCCESSEUR, COPRIMARITE
ET LA RELATION BINAIRE « y EST UNE PUISSANCE DE X »

8.1. Nous considérons maintenant la relation binaire
PUIS = {(x, y): il existe n > 1 tel que y = x"}.

Remarquons que la relation d’égalité se définit facilement dans le langage
réduit au seul prédicat PUIS par la formule PUIS (x, y) A PUIS(y, x).

Les fonctions S et Pred sont donc définissables I'une a partir de lautre
avec PUIS.

THEOREME. Les deux structures (N;S; L, PUISY et (N;+, x; =)
définissent les mémes relations et fonctions.

Remarque. Bien siir, le Théoréme 6.2 n’est pas directement applicable
car PUIS n’est pas — a priori — quasi-saturé pour un = .
Ce Théoreme est un corollaire immédiat du Théoréme 7.4 et de la

Proposition suivante, dont la preuve est 'objet des alinéas 8.2 a 8.5
ci-dessous.
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