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168 S. GRIGORIEFF ET D. RICHARD

(*) SaU» - U Ext^NWrnProj.CSaU»]] •

JT£{1, ...,k},p \I\

On note Ki a l'ensemble Ki>a {x > m: SUPP(x-fa) SUPP(\i + a\)}.
Il est clair que si — m ^ a ^ 0 l'ensemble Ki a est (Pred; »définissable.
Comme M [Mn{0, 1,m}] u [ (J f| on en déduit que M est

l^i^m aeA

(Pred; »définissable.
Il en résulte que si X est (Pred; Indéfinissable alors il en est de même

des Extj(X).

7°) On peut maintenant achever la preuve du point iii) du Théorème.

Si p est saturée pour =A alors les Projj[Sat»p)] le sont aussi. Le

point 5°) montre que les (N\M)P n Projj[Sat»p)] sont (Pred;
»définissables, il en résulte que les ExtJ[(N\M)pnProj/[Sat^^(p)]] le sont aussi,

et donc également p.

8°) Dans le cas général où A comprend des éléments positifs et d'autres

négatifs, on raisonne comme dans les points 4°) à 7°). Cependant, la fonction
TA est, dans ce cas, une composée d'itérées des deux fonctions S et Pred

avec la fonction de brassage x i—> (x,..., x) de N dans N". C'est donc alors
la famille des relations définissables dans <N; S, Pred;...) qui est stable par
image réciproque par TA. D'où la nécessité (à priori) d'introduire le langage
(S, Pred; 1).

§ 6. L'égalité et le problème de J. Robinson

6.1. Le résultat ci-dessous — à priori technique — s'avère être un outil
performant dans l'étude du rôle de l'égalité en face de S et _L.

Définition. Soit A une partie finie de Z. Une relation p, incluse dans

Nfc+1, est dite quasi-saturée pour =A si elle est saturée en toutes ses

variables sauf peut-être la première, c'est-à-dire que lorsque xt =Ayt pour
1 ^ » /c, alors les (k + l)-uplets (z, xx,..., xk) et (z, y1,..., yk) sont simultanément

dans p ou hors de p.

Exemple. D'après la Proposition 2.13, toutes les parties de N x PPk

(où PP est l'ensemble des primaires) sont quasi-saturées pour =A si A
contient {0, 1, 2} ou {— 2, — 1, 0}.

Lemme. Soit A une partie finie de Z. Soient pl5..., ppî0 des

relations définissables dans la structure <N ; -f, x ; — et chacune quasi-
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saturée pour A. On suppose que 0 est incluse dans N2 et que la

deuxième projection A de 0 (i.e. À {x0: il existe x tel que (x, xo)G0}y)

est une partie de N définissable dans <N; S, Pred; _L>.

Si x est une relation définissable dans <N; S, Pred; 1, Pi,-, Pp) et

incluse dans N", alors les relations

x' {(x0, xl5xn_.1): il existe x tel que (x, x0) e 0 et (x, xl5x^J e x}

x" {(x0, xx,xB_ i) : x0 g A et, pour tout x, si (x, x0) e 0

alors (x, Xi,x„_ f) g x}

sont également définissables dans la structure <N; S, Pred; 1, px,pp)
(c'est-à-dire sans faire intervenir la relation d).

Preuve. 1°) Le fait que A soit la deuxième projection de 0 et la quasi-

saturation de 0 pour =A montrent que A est J-saturé. Comme,
relativement à x' et x", la variable x0 varie dans A, on voit que x' et x"

sont ^)-saturées par rapport à x0.

2°) Si X est une partie de Z, posons Titj(X) {— j,..., 0} u \_X + {/—/}]•
Si u =Ti j(X) v alors (cf. la preuve de 4.11) on voit facilement que

— si x ^ j ou y ^ j alors TUj(X) contient — x ou — y et donc x y,

— x + (i-j) =xy + {i-jl
Il en résulte que S*[Pred7 (u)] =x S^Pred-7^)].

3°) Par récurrence sur la complexité de la formule F(x0, Xi,..., x„_ x) qui
définit x dans <N; S, Pred; X, p1? -, pp), on construit des formules F' et

F" qui définissent x' et x" dans cette même structure.

L'étape d'induction, c'est-à-dire l'introduction des connecteurs et
quantificateurs (qui, en termes ensemblistes (cf. 3.6), correspond aux opérations
booléennes et aux projections) est évidente: si D(x0) définit A avec S, Pred
et _L, alors

(3xiL)/ est 3xf(F), (F v G)' est F' v G', (—i F)' est ~~i(F") a D(x0) ;

(VxfF)" est VXi(F'% (F a G)" est F" a G", (~~iF)" est ~l(F') a D(x0)

L'étape initiale de la récurrence concerne les formules atomiques, c'est-à-dire
les relations x qui sont images réciproques des relations _L, R±,..., Rp par les

composées des fonctions S et Pred avec les fonctions de brassage. Les termes
du langage (S, Pred; _L, Rp) se ramènent (après simplification des
Pred o S) à ceux de la forme t(x) F[Predj(x)] où x est une variable.
D'où les différents cas considérés ci-dessous.
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4°) Cas où F est t(x0) _L w(x0)

Dans ce cas F et x" ne comportent qu'un seul argument et le point 1°)

montre qu'elles sont ^)-saturées et donc, d'après le Théorème 4.10,

définissables dans la structure <N; S, Pred; 1).
5°) Cas où F est t0(x0) _L t^xj
Si le terme C(xi) est ^[Pred-7^)] alors la {0})-saturation de 1 implique la

n .({^-saturation par rapport à x1 de la relation x et donc aussi de x!

et x". Compte tenu de 1°), les relations x! et x" sont r. i({0}M)-saturées, et

donc (Théorème 4.10) définissables dans <N; S, Pred; 1).
6°) Casoù F(x0, xx,x^) est -, où
1 ^ a < p— 1, a: {1,ka} ->{0,n1} et a(l) 0.

Si tirfjr(xa(r)) est S'-EPred^x^j,)], on pose ThJl{A) u u
De la A)-quasi-saturation de l'interprétation pa de Ra, on déduit la

5)-saturation de x par rapport aux variables x{- telles que i ^ cj(1) 0,

et donc aussi le même résultat relatif à x! et x". Le point 1°) assure alors

que x' et x" sont BUi4)-saturées et donc (Théorème 4.10) définissables dans

<N; S, Pred; 1>.

7°) Cas où F(x0,x1,..., xn_J est Pa(ClX(i)]>..., ^[xff(fca)]), où 1 ^ a

< p — 1, a: {1,..., ka} -+ {0,..., n — 1} et a(l) # 0.

Soit B défini comme au point 6°). On pose

X {(z, x0) : il existe x tel que z =B x et (x, x0) g 9}

Comme 0 est J-quasi-saturée, X est Bu J-saturée et donc (Théorème 4.10)

définissable dans <N; S, Pred; 1). La J-quasi-saturation de pa montre la

ß)-saturation de x par rapport aux variables xf telles que i ^ c(l), en

particulier celles telles que a(i) — 0 (car g(1) ^ 0). On a donc

x' {(x0, Xi,xn_ i) : il existe x tel que (x, x0) g 0 et (y1,..., ykJ g pa où

yt vaut ti [xCT(î)] si a(i) ^ 0 et vaut q[x] si o(i) 0},

{(x0, Xi,..., x„_ x) : il existe z tel que (z, x0) g X et (y1,..., yhJ g pa où

yt vaut ti [xCT(0] si o(i) ^ 0 et vaut q[z] si a(z') 0}.

x" {(x0, x1,..., x„_ x) : x0 g À et pour tout x, si (x, x0) g 0 alors

(y1,..., yk) g pa où vaut t;[xa(0] si a(i) ^ 0 et vaut

q [x] si çj(z) 0},
{(x0, xl5..., x„_i): x0 g. A et pour tout z, si (z, x0) g X alors

0>i> •••> yuj e pa où yt vaut tt [xCT(J si a(z) ^ 0 et vaut

^[z] si a(z) 0}
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Ces égalités donnent des définitions de x' et x" à partir de À, X et pa,

et donc (puisque A et X sont définissables avec S, Pred et 1) des

définitions de x! et x!' dans <N ; S, Pred ; 1, pa>.

6.2. Le résultat suivant est une extension du Théorème de Woods sur

l'équivalence du Problème de Robinson et de la (S ; _L)-définissabilité de

l'égalité.

Théorème. Soient pi,..., pp, cpi,..., <pq des relations et fonctions
définissables dans <N; + x ; =>. On suppose que p1? pp et les graphes

de (pl5..., cpg sont quasi-saturés pour A où A est une partie finie
de Z (c'est le cas, en particulier, si ces relations et graphes sont inclus

dans un produit N x [PPfc + P] où B est une partie finie de Z).
Si l'égalité est définissable dans <N; S, Pred, cpx,..., (pq; _L pi,..., pp)

(resp. <N; S, cpx,..., (pq;±,pl9..., pp>, resp. <N; Pred, cp±,..., (pq; 1, Pi,pp})
alors cette structure définit les mêmes relations et fonctions que <N ; + x ;

Preuve. Appliquons le Lemme 6.1 avec les relations pf et les graphes
des cpj, et, pour x la relation d'égalité, pour 0 le graphe de la fonction

x I-» 5X (graphe qui est bien quasi-saturé puisque son second argument est

toujours un primaire). On observe que x' est l'image de 0 par la fonction
de brassage (x, y) i-> (y, x). La <N; S, Pred; _L Pi,pp, Gr(cpx),... Gr((pq)}-
définissabilité de x', et donc de 0, permet de conclure à celle de + et x,
grâce à la Proposition 5.12.

On achève la preuve en observant que la définissabilité de l'égalité dans

la structure <N; S, Pred, cpx,..., <pq; JL p1,..., pp} montre l'équivalence de

cette structure et de <N; S, Pred; 1, pi5..., pp, Gr(cpx),... Gr(cpg)>.

On remarque enfin que si l'égalité est définissable avec les pf, cp-,

1 et S sans l'aide de Pred (resp. avec Pred sans l'aide de S) alors la
fonction Pred (resp. S) l'est aussi.

Remarque. Considérant pour p la relation d'égalité, on voit que la
condition de quasi-saturation des pa ne peut pas être levée dans le Lemma 6.1

ni dans le présent Théorème (sauf si la conjecture d'Erdös-Woods est vraie

6.3. Une application simple du Théorème 6.2 est la suivante:

Théorème. Soit J une injection de domaine N à valeurs dans les

primaires et définissable dans (N ; + x ;
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Les trois structures <N; S, J; ±>, <N; Pred, J; JL> et <N; + x ; =>
définissent les mêmes relations et fonctions.

Preuve. La relation d'égalité est définissable dans la structure <N ; S, J ; _L

par la formule J(x) PPJ(y) (cf. 5.5 pour la définition de =PP). On conclut
en appliquant le Théorème 6.2 avec pour p le graphe de J (qui est quasi-
saturé car à valeurs dans les primaires).

6.4. Une autre application simple du Théorème 6.2 est la suivante :

Soit EXP la relation binaire EXP {(x, y) : il existe a ^ 0 tel que y ax).

Théorème. Les trois structures <N ; S ; _L, EXP), <N ; S ; T, EXP) et

<N ; + x ; > définissent les mêmes relations et fonctions.

Preuve. On considère seulement le cas (S ; _L, EXP). Soit A l'ensemble

A EXP n[Nx PP] {(x, px) \ xe N et p e P}. On observe que l'égalité
x y équivaut à l'existence d'un z tel que (x, z) et (y, z) soient dans A.

L'égalité est donc définissable dans la structure <N ; S ; _L, A>.
Comme A est incluse dans N x PP, elle est quasi-saturée pour {0> 1>2},

et le Théorème 6.2 montre que + et x sont définissables dans la structure
<N ; S ; _L, A}. On conclut en remarquant que la relation A est elle-même
définissable dans la structure <N ; S ; 1, EXP) par la formule PP{y) a EXP(x, y).

6.5. Le Théorème ci-dessous est un fait curieux que l'on peut énoncer ainsi:

bien qu'il apparaisse difficile de la définir avec successeur et coprimarité,
la relation d'égalité n'a pourtant pas un pouvoir de définissabilité important,
sa contribution — en face de S et _L — se limite à se définir elle-même

ainsi que le graphe des itérés de S et elle n'est pas en mesure d'utiliser la

puissance des quantifications

Théorème. Toute formule du langage (S, Pred; _L) équivaut à une

combinaison booléenne de formules du langage (S, Pred ; _L) — formules sans

égalité — et de formules du type x Sl(y) (resp. x Predl(y))
—formules sans quantificateur —.

En termes ensemblistes, la classe des relations (JS ; S ,Pxed;
L}-définissables coïncide avec la classe des relations obtenues par combinaisons

booléennes

— des relations définissables dans la structure <(N; S, Pred; _L>,
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— des graphes des itérées de la fonction successeur (resp. prédécesseur)

et leurs images réciproques par les fonctions /PjCC) ß; (x1, xp) i— (xa, xß)

où 1 ^ a ^ p, 1 ^ ß ^ p, oc ^ ß.

Preuve. 1°) On commence par montrer que toute formule du langage

(S, Pred ;=,_!_) équivaut à une formule de ce même langage dont les sous-

formules atomiques sont particulièrement simples. C'est l'objet des points 2°)

à 4°).

2°) Si t1 et t2 sont des termes, les formules t.x 1 t2 et tx t2 sont
équivalentes à

3z13z2[(z1 - tx) a (z2 t2) a (z|J_z2)] et 3z13z2[(z1 tf a (z2 t2) a (z:l z2)]

Toute formule est donc équivalente à une autre dans laquelle les sous-
formules atomiques sont toutes de la forme t x ou x _L y où t est un
terme et x, y sont des variables.

3°) Comme Pred o S est l'identité, on peut se ramener au cas où tous les

termes sont de la forme S^Pred-^z)] où z est une variable.

4°) On a déjà vu (cf. 5.3) que tout singleton, et donc toute relation
finie ou cofinie, est définissable avec _L et S ou Pred.

Comme S1 [Pred7 (z)] vaut i si z ^ j et vaut z + i — j si z ^ j, la formule
S'PPred-^z)] x est équivalente à:

Ces formules sont de la forme [(Nx)aA(x)] v B(x, z) où A et B sont
écrites avec Pred et 1, et t est un terme du type Sk{z) ou Predk(z).

Notons enfin que la formule x x est toujours vraie et équivaut à

~i(xlx); si k ^ 0, la formule x Sk(x) est toujours fausse et équivaut à
(x_Lx) a n(xlx), la formule x Predfc(x) équivaut à x — 0.

On voit donc que

(*) Toute formule est équivalente à une formule dont les sous-formules
atomiques sont toutes de la forme x Sk(y) ou x Predfc(j;) ou encore
x _L z, où x, y sont des variables distinctes, z une variable et k ^ 0.

5°) Notons enfin que la formule x S\y) est équivalente à (y Predfc(x))
a (x^/c), laquelle est de la forme (y Pred*(x)) a A{x), où A est écrite avec
Pred et 1 (et sans égalité).

[(x Z)A(Z^7)] v [(X=I)aNJ)]
[(x Pred7 - 1(z)) a (z ^j)] v [(x-() a (z</)]
[(x ^-^(z))a(z^j)] V [(x= z) a (z </)]

SI l <j
si z > j

si z j
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De même, la formule x Predk(y) est équivalente à (;y Sk(x)) v [(x 0)

a (y^fc)], de la forme (y Predk(x)) a B(x, y) où B est écrite sans égalité.
Ainsi, on peut donc échanger les sous-formules x Predk(y) et y Sk(x%

modulo l'introduction d'autres sous-formules du langage (Pred, _L) ou (S, _L).

6°) Le point 5°) montre qu'il suffit, pour prouver le Théorème, de pouvoir
associer à toute formule F(x1,..., xp) du langage (S, Pred; _L) une formule
équivalente F'(xls xp) qui est combinaison booléenne de formules du

langage (S, Pred, A.) et de formules du type Sl(x) y ou Pred*(x) y,
où x, y sont des variables. Les points 2°) à 4°) montrent que l'on peut se

restreindre aux formules F(xl5..., xp) du langage (S, Pred; L) qui ont
la propriété (*).

La construction procède alors par récurrence sur la complexité de F.

7°) L'initialisation de la récurrence indiquée en 6°) est l'étude du cas des

formules atomiques. Puisque F vérifie (*), les seuls cas à étudier sont

x S\y), x Predk(y) et x L y ; il est évident qu'il suffit de prendre alors F'
égale à F.

8°) L'étape d'induction de cette récurrence concerne l'introduction des

connecteurs et du quantificateur existentiel.

Le passage aux connecteurs est évident: (~nF)' est ~i(F'), etc.

Le passage au quantificateur existentiel est l'objet des points ci-dessous.

9°) Soit F(x1,..., xp, xp + 1) une formule du langage (S, Pred, 1) pour
laquelle est déjà construite la formule équivalente F' de la forme indiquée
en 6°). On cherche à construire [3xp+1F{x1,..., xp, xp + 1)]'.

Utilisant 5°) pour les sous-formules Predk(x^) xj9 Sk(xp + 1) Xj et

Predk(xp+1) Xj de F', on voit que F', et donc aussi F, équivaut à une
combinaison booléenne de formules du langage (S, Pred, L) et de formules
des types Sk{xi) Xj,Sk(Xi) xp + 1 et Predfe(Xj) xp+1, où i ^ p et

j < P-

Rappelons que toute combinaison booléenne de formules se ramène à une

disjonction de conjonctions de ces formules et de leurs négations. D'autre

part, toute conjonction (t1 xp + 1) a R(t2, xp+1) équivaut à

(t1=xp +1) a R(UUi) •

Enfin, toute conjonction (ti^xp+1) a (t2^xp+1) équivaut à

[(U ^xp + 1) a (t1 t2J] v [(u ^xp+a (t2 ¥zxp+ -l) a (l •

Ceci montre que la formule F', et donc aussi F, équivaut à la disjonction
d'une famille de formules Ha(xl,..., xp) a Fa(x1,..., xp, xp+ x), a e A (A fini),
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où Ha est une conjonction de formules 5k(xf) Xp i ^ p,j < p, et de leurs

négations, et chacune des Fa est de l'une des deux formes suivantes :

Ga(x1,..., xp, xp+1) a [(sa xp+1)]

ou Gtx(x1,xp, xp+A [A (tU7^xp+1)] a [ A (C^C)]
ueUa ueUa,veUa,ufv

où Ga est une formule du langage (S, Pred, _L), sa et tu sont des termes

de Informe Sk(Xi) ou Predk(xf), avec i ^ p.

10°) Comme la quantification existentielle commute avec la disjonction, la

formule 3xp+1F équivaut à la disjonction des 3xp+1(Ha aFJ. La construction
de [3xp+1FJ peut ainsi être ramenée à celle des [3xp+1(Ha aFJ]' (dont ce

sera la disjonction).
Comme Hfxl,xp) ne dépend pas de xp+1, la formule 3xp+1(Ha a Fa)

équivaut à Hfx1,xp) a 3xp+1Fa. La construction de [3xp+1(Ha aFJJ
peut ainsi être ramenée à celle de [Bx^+iFJ' (dont ce sera la conjonction
avec Ha).

11°) Le cas où Fa est de la forme Ga(x2,xp, xp^. J a [(sa xp + 1)] est

trivial: la formule 3xp + 1Fa équivaut alors à Ga(x1;xp, sa), laquelle est de

la forme demandée en 6°) et peut être prise pour [3xp + 1FaJ.

12°) Etudions maintenant le cas où Fa est de la forme

Ga(xt, •••, xp,Xp+ J A [A (f„#xp + 1)] A [ A (t„^£„)]
usUa ueUa,veUa,u^v

D'après la Proposition 4.11 il existe une partie finie A de Z telle que la
relation définie par la formule Ga soit ^)-saturée. La relation =A est

évidemment définissable dans le langage (S, Pred, 1). Pour tout entier
k ^ 1, l'ensemble {x e N: la classe de x pour =A contient exactement
k éléments} est ^)-saturé. Le Théorème 4.10 assure donc qu'il est
définissable par une formule, notée EQk(x), du langage (S, Pred, 1). Si X est

un ensemble fini nous notons | X | le nombre de ses éléments. On considère
les formules 0, cpu> x et i|fu x suivantes, où u g Ua et X ç Ua :

^ (Xp+lj^ aF) > (Xp+1~ aKÏ] A [A (tv — Atuj] A [A {tw^= AtuJ] A EQ\x\(tu)
veU^ vsx w£X

et

(^p+1~ A^u)1 A C A A [A {twj^ Atuf\ A \ EQ\x\(tu)
veX w<£X

La disjonction de ces formules, quand varie dans Ua et dans les parties
de Ga, est une tautologie.
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La construction de [3xp+1FaJ peut ainsi être ramenée à celle des

[3xp+1(Fa a0)]', [3xp + 1(Fa A(pBj)]', [3xp+1(FaA\|/W5X)]' (dont ce sera la

disjonction).

13°) On observe que les clauses tu ^ xp+1 de Fa sont trivialement impliquées

par 0 et peuvent donc être supprimées dans la formule Fa a 0. Cette dernière

équivaut donc à Gfix1,..., xp9 xp+1) a La où La est la conjonction des

tu / tv (où ne figure pas xp+1). Ainsi, 3xp + 1(Fa a 0) équivaut à La a 3xp+1Ga.
Il est clair que cette dernière formule est de la forme demandée en 6°)

et peut être prise pour [ßxp+1(Fa a0)J.

14°) On observe que la formule Fa a çu X est toujours fausse car (puX

implique que la classe de tu pour A est l'ensemble des tv, v X, et donc

que xp + 1 est égal à l'un d'eux, ce qui contredit une des clauses de Fa.
On peut donc prendre pour [3xp+1(FaA(puX)J une formule comme x1 ^ xx.
15°) La relation définie par Ga étant ^j-saturée et \|iu X impliquant
Xp + 1 =Atu,lesformules Ga(xl fxp,xp+1)av|/„>xet a \|/b>x

sont équivalentes. Notons pu x la conjonction des clauses t, =Atu,tw
et ~nEQ\X\(tu) de y\tUfX (veX et w$X). Cette formule assure que la classe

de tu pour A contient un élément z différent des tv, v e X. Un tel élément z

est nécessairement également différent des tW9w $ X (lesquels ne sont pas
dans la classe de tu). Ainsi, ç>u X implique 3z[{z Atu) a A (C^z)].

veUa

Observons que Fa a \|/m x est équivalente à une formule de la forme

Xp) A [jXjrj-t-l A^uY! A ^ 5

veUa

où Ma, qui contient pu>x, est la conjonction d'une formule du langage
(S, Pred, 1) et des tu =£ tv (où ne figure pas xp + 1).

On voit donc que 3xp + 1(La a \|/u x) équivaut à Ma(xl s..., xp)9 laquelle peut
donc être prise pour [3xp + 1(FaA^fUfX)J.

Fin de la preuve du Théorème 6.5.

6.6. Une application du Théorème 6.5 permet d'obtenir l'implication
i) => iii)ter du Théorème 4.8 (et ce, de façon tout à fait constructive).

Corollaire. Si + et x sont définissables dans la structure

<N; S, Pred; _L> alors l'égalité l'est dans <N; 5, Pred; J_>.

Preuve. Le Théorème 6.5 montre que si la relation d'ordre x < y est

définissable avec S, Pred, et 1, elle l'est par une formule qui, mise

sous forme de disjonction de conjonctions, a la forme suivante
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V [F2(.x. y) A [A(.VT-V-i i )] A [A(x#y+j)] a [A(y x + /c)]
26.4 iel-j jeJa /ceKa

A [ A(.X=aj+l)]]
IsLa

où est une formule ne faisant pas intervenir l'égalité.
Si iv2 ou contient plus d'un élément alors la clause associée à oc

est impossible et peut donc être supprimée. Si La n'est pas vide ou si

K2 contient 0 alors la clause associée à cc contredit la condition x < y
et peut donc être supprimée. Si Ka {/t}, k ^ 1, alors la sous-formule

}• x + k implique x < y; ainsi, la clause associée à a peut, toute entière,
être remplacée par y — x + k.

Ceci permet de définir x < y sous la forme suivante :

[ V y x + /c] v V[f3(x, y) a [A a [ A
ksK aeA iela

Soit M le supremum des éléments des Ja.

Puisque la clause associée à a implique x < y, on voit que Ea(x, y) implique
(x<y) v [ V (y .x + i)]v [ V (x y+_/)]], qui implique aussi x < y + M.

i-I-1 jAJ-j

Si F{x. }•) est la disjonction des F^(x, y), on voit donc que

x < y F(x, y) => x ^ y + M

d'où x y => F(x. y +1) a F{y, x-h 1) ^ | x — y | ^ M + 1.

Le point iii) du Théorème 2.11 permet alors de conclure que l'égalité x y
est définie par la formule F(x, y +1) a F{y, x+1) a £(x, y) où E(x, y) est la
formule, écrite avec S et 1 qui définit la relation x ={0 Jcl y, où k est

un premier supérieur à M.

§ 7. Déeinissabilité par successeur, coprimarité
ET RÉSIDUATION QUADRATIQUE

7.1. Désignons par RES et T les relations binaires

RES {(x. p) g N x P: x est résidu quadratique modulo le premier p)
T {(T P) e N x P : x est impair et l'exposant (peut-être nul) du

premier p dans la décomposition primaire de x est
pair}

Le Théorème de Stornier (cf. Corollaire 2.5, point ii) se traduit par le
lemme suivant :
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