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168 S. GRIGORIEFF ET D. RICHARD

(*) Sat~ (p) = U Ext;[(N\M)?nProj,[Sat~ ,(p)]] .
IS{1,...,k}, p=|I
On note K; , I'ensemble K; , = {x > m: SUPP (x+a) = SUPP (li+a|)}.
Il est clair que si — m < a < 0 l'ensemble K; , est (Pred; L)-définissable.
Comme M = [Mn{0,1,..,m}JU[ |J [) K..], on en déduit que M est

1<i<maed
(Pred; 1)-définissable.
Il en résulte que si X est (Pred; L)-définissable alors il en est de méme
des Ext (X).

7°)  On peut maintenant achever la preuve du point iii)) du Théoréme.

~

Si p est saturée pour =, alors les Proj,[Sat. (p)] le sont aussi. Le
point 5°) montre que les (N\M)? n Proj;[Sat~ ,(p)] sont (Pred; L)-défi-
nissables, il en résulte que les Ext;[(N\M)?nProj;[Sat. (p)]] le sont aussi,
et donc également p.

8°) Dans le cas général ou 4 comprend des ¢léments positifs et d’autres
négatifs, on raisonne comme dans les points 4°) a 7°). Cependant, la fonction
T, est, dans ce cas, une composée d’itérées des deux fonctions S et Pred
avec la fonction de brassage x +— (x, ..., x) de N dans N”". Cest donc alors
la famille des relations définissables dans {IN; S, Pred;..> qui est stable par
image réciproque par T ,. D’ou la nécessité (a priori) d’introduire le langage
(S, Pred; 1).

§ 6. L’EGALITE ET LE PROBLEME DE J. ROBINSON

6.1. Le résultat ci-dessous — a priori technique — s’avere étre un outil
performant dans I’étude du rdle de I’égalite en face de S et L.

Définition. Soit A une partie finie de Z. Une relation p, incluse dans
NF*+1 est dite quasi-saturée pour =, si elle est saturée en toutes ses
variables sauf peut-étre la premiere, c’est-a-dire que lorsque x; =, y; pour
1 < i<k, alors les (k+1)-uplets (z, xq, ..., X¢) €t (z, yq, ..., i) sont simulta-
nément dans p ou hors de p:

Exemple. D’aprés la Proposition 2.13, toutes les parties de N x PP*
(ou PP est I'ensemble des primaires) sont quasi-saturées pour =, si A
contient {0, 1,2} ou {— 2, — 1, 0}.

LEMME. Soit A wune partie finie de Z. Soient py,..,p,,0 des
relations définissables dans la structure (N; +, x; =) et chacune quasi-
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saturée pour = ,. On suppose que © est incluse dans N? et que la
deuxiéme projection A de O (ie. A = {x,:il existe x tel que (x, x0)€0})
est une partie de N définissable dans <(N; S, Pred; L).

Si 1 est une relation définissable dans (N;S,Pred; L,p;i, ..., p,> et
incluse dans WN", alors les relations

T = {(Xg, X1, X,_1): il existe x tel que (x, xo) € 0 et (x, x4, ., X,—1) €T},

T = {(Xg» X1, Xp—1): Xo €A et, pour tout x, si (x, xo) € 0
alors (X, Xy, wy Xy—1) € T}

sont également définissables dans la structure <{N;§,Pred; L, ps, .., Pp)
(Cest-d-dire sans faire intervenir la relation 0).

Preuve. 1°) Le fait que A soit la deuxiéme projection de 0 et la quasi-
saturation de 6 pour =, montrent que A est (= ,)-saturé. Comme, rela-
tivement a T et t”, la variable x, varie dans A, on voit que t' et 1"
sont (= ,)-saturées par rapport a X .

2°) Si X est une partie de Z, posons T; ;(X) = {—j,...0} U [X+{i—j}].
Si u =y, x v alors (cf. la preuve de 4.11) on voit facilement que

— si x <jouy<jalors T; ;(X) contient — x ou — y et donc x = y,
— x+({—j) =xy + (i—))
Il en résulte que S'[Pred’(u)] =4 S[Pred’(v)].

3°) Par récurrence sur la complexite de la formule F(x,, xq, ..., X,_ ;) qui
définit v dans <{N; S, Pred; L, py, .., p,), on construit des formules F" et
F" qui définissent 1" et Tt dans cette méme structure.

L’é¢tape d’'induction, c’est-a-dire I'introduction des connecteurs et quanti-
ficateurs (qui, en termes ensemblistes (cf. 3.6), correspond aux opérations
booléennes et aux projections) est évidente: si D(x,) définit A avec S, Pred
et 1, alors

(Ax.F) est dx;(F'), (Fv G) est F' v G, (1 F) est 1(F") A D(x,);
(Vx.F)" est Vx,(F"), (FAG)" est F" A G",(T1F)" est 71(F') A D(x,) .

L’¢tape initiale de la récurrence concerne les formules atomiques, c’est-a-dire
les relations t qui sont images réciproques des relations L, R, ..., R, par les
composees des fonctions S et Pred avec les fonctions de brassage. Les termes
du langage (S, Pred; L,R,,..,R,) se raménent (aprés simplification des
Pred - §) a ceux de la forme t(x) = S’[Pred’(x)] ou x est une variable.
D’ou les différents cas considérés ci-dessous.
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4°) Casou F est t(xq) L u(x)
Dans ce cas 1t et ©” ne comportent quun seul argument et le point 1°)

montre qu’elles sont (= ,)-saturées et donc, d’apres le Théoreme 4.10,
definissables dans la structure {IN; S, Pred; L ).

5°) Casou F est tolxgy) L tixy)

Si le terme t,(x,) est S'[Pred’(x,)] alors la (= ,,)-saturation de L implique la
(= 1, yop)-saturation par rapport a x; de la relation t et donc aussi de v
et t". Compte tenu de 1°), les relations 7 et 17 sont (=g, opa)-saturées, et
donc (Théoreme 4.10) définissables dans {IN; S, Pred; L ).

6°) Cas ou F(Xg, X15 e Xp—1) est R, (t1[Xs(1)1s s L [ X)) ou
l<a<p—1lo:{1,.,k}—{0,.,n—1} et o) =0.

Stot; Jr(xc(,)) est S"[Pred’(x,;)], on pose B = T, ;(A) U .. Ty i, (A).
De la (= ,)-quasi-saturation de linterprétation p, de R,, on dedult la
(= g)-saturation de t par rapport aux variables x; telles que i # o(l) =
et donc aussi le méme résultat relatif a 1" et t". Le point 1°) assure alors

que T et v’ sont (=5 4)-saturées et donc (Théoréme 4.10) définissables dans
(N; S, Pred; L.

7% Cas ou  F(xg, Xy, . Xp—1) est  Ry(ti[Xgu)ls o b [Xoayl) ou 1 < a
<p-— Lo {l,.,k}—{0,.,n—1} et o(l) #0.
Soit B défini comme au point 6°). On pose

L = {(z, xo): il existe x tel que z =5 x et (x, x,) € 0} .

Comme 0 est (= ,)-quasi-saturée, A est (=g, 4)-saturée et donc (Théoreme 4.10)
définissable dans {(N; S, Pred; L ). La (£ ,)-quasi-saturation de p, montre la
(= p)-saturation de 1t par rapport aux variables x; telles que i # o(1), en
particulier celles telles que o(i) = 0 (car o(1) # 0). On a donc

4

T = {(Xg, X1, X,—1): il existe x tel que (x, xo) €0 et (y;, .., )€ p, OU
y; vaut t;[x.] si o(i) # 0 et vaut t,[x] si o(i) = 0},
= {(Xg, X1, X,—1): 1l existe z tel que (z, xo) €A et (yy, .., i) € P OU
y; vaut t;[ x4, ] si o(i) # 0 et vaut t;[z] si o(i) = 0}.

14

T = {(Xg, X1, Xp—1): Xo € A et pour tout x, si (x, x,) € 0 alors
(V15 - Vi) € Py OU y; vaut £;[x,] si o(i) # 0 et vaut
L[] si o) = 0},

= {(x0, X1, Xp—1): Xo €A et pour tout z, si (z, x,) € A alors
(V15 - Vi) € Py OU y; vaut t;[x1 st o(i) # 0 et vaut
t;[z] si o(i) = 0}.
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Ces égalités donnent des définitions de ©° et t” a partir de A, A et p,,
et donc (puisque A et L sont définissables avec S, Pred et 1) des defi-
nitions de ' et t° dans {(N; S, Pred; L, p,)-

6.2. Le résultat suivant est une extension du Théoréme de Woods sur
équivalence du Probléme de Robinson et de la (S; 1)-définissabilité de
I’égalité.

THEOREME. Soient P, .., Py, @1 @, des relations et fonctions défi-
nissables dans (N; +, x; =>. On suppose que pi,..,p, et les graphes
de ¢y,.., ¢, sont quasi-saturés pour =, ou A est une partie finie
de Z (cest le cas, en particulier, si ces relations et graphes sont inclus
dans un produit N x [PP*+B] ou B est une partie finie de Z.).

Si légalité est définissable dans <(IN; S, Pred, @i, ..., 9,5 L, p1s o Pp)
(resp. NS, @1y @3 L, Py Py resp. (N Pred, @4, o, 045 L, pys ooy Pp))
alors cette structure définit les mémes relations et fonctions que {(N; +, X ; =).

Preuve. Appliquons le Lemme 6.1 avec les relations p; et les graphes
des @;, et, pour 1 la relation d’égalité, pour 0 le graphe de la fonction
x > 5% (graphe qui est bien quasi-saturé puisque son second argument est
toujours un primaire). On observe que T est I'image de 0 par la fonction
de brassage (x,y)+— (y,x). La {(N;S§,Pred; L, py, ..., pp, Gr{(®y), ... GHP,))-
définissabilité de t’, et donc de O, permet de conclure a celle de + et X,
grace a la Proposition 5.12.

On acheve la preuve en observant que la définissabilité¢ de I’égalité dans
la structure <{N;§, Pred, @, .., @;; L, py,.., pp,y montre I'équivalence de
cette structure et de <N; §, Pred; L, py, ..., p,, Gr{(@,), ... Gr{(p,)).

On remarque enfin que si I'égalite est définissable avec les p;, @;,
L et S sans l'aide de Pred (resp. avec Pred sans l'aide de S) alors la
fonction Pred (resp. S) I’est aussi.

Remarque. Considérant pour p la relation d’égalité, on voit que la

condition de quasi-saturation des p, ne peut pas étre levée dans le Lemma 6.1
ni dans le present Théoreme (sauf si la conjecture d’Erdds-Woods est vraie !).

6.3. Une application simple du Théoréme 6.2 est la suivante:

THEOREME. Soit J wune injection de domaine N & valeurs dans les
primaires et définissable dans <(N; +, x ; =>.
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Les trois structures <{N;S,J; L), {N;Pred,J; L) et {N; +, x;=>
définissent les mémes relations et fonctions.

Preuve. La relation d’égalité est définissable dans la structure (N; S, J; L>
par la formule J(x) =pp J(y) (cf. 5.5 pour la définition de = pp). On conclut
en appliquant le Théoréme 6.2 avec pour p le graphe de J (qui est quasi-
saturé car a valeurs dans les primaires).

6.4. Une autre application simple du Théoréme 6.2 est la suivante:

Soit EXP la relation binaire EXP = {(x, y): il existe a > 0 tel que y = a*}.

THEOREME. Les trois structures {(N;S; L, EXP> (N;S; L,EXP)> et
(N; +, x; =) définissent les mémes relations et fonctions.

Preuve. On considere seulement le cas (S; L, EXP). Soit 4 I’ensemble
A = EXP n [NxPP] = {(x,p"): xe N et pe P}. On observe que I’égalité
x = y équivaut a l’existence d’un z tel que (x,z) et (y, z) soient dans A.
L’egalité est donc définissable dans la structure {<IN; S; 1L, 4).

Comme A4 est incluse dans N x PP, elle est quasi-saturée pour =, ; ),
et le Théoréme 6.2 montre que + et x sont définissables dans la structure
(N;§; L, A>. On conclut en remarquant que la relation A4 est elle-méme défi-
nissable dans la structure (\N; §; L, EXP) par la formule PP(y) A EXP(x, y).

6.5. Le Théoreme ci-dessous est un fait curieux que 'on peut énoncer ainsi:

bien qu’il apparaisse difficile de la définir avec successeur et coprimarité,
la relation d’égalité wa pourtant pas un pouvoir de définissabilité important,
sa contribution — en face de S et 1 — se limite a se définir elle-méme
ainsi que le graphe des itérés de S et elle n’est pas en mesure dutiliser la
puissance des quantifications!

THEOREME. Toute formule du langage (S, Pred; =, 1) équivaut a une
combinaison booléenne de formules du langage (S, Pred; 1) — formules sans
égalité — et de formules du type x = S'(y) (resp. x = Predi(y))
— formules sans quantificateur —.

En termes ensemblistes, la classe des relations (N;§,Pred; =, L)>-défi-
nissables coincide avec la classe des relations obtenues par combinaisons
booléennes

— des relations définissables dans la structure {(N; S, Pred; L),
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— des graphes des itérées de la fonction successeur (resp. prédécesseur)
et leurs images réciproques par les fonctions f, . p: (X1, s Xp) > (Xo, Xp)
ou 1<a<pl<B<pa#dp

Preuve. 1°) On commence par montrer que toute formule du langage
(S, Pred; =, 1) équivaut 4 une formule de ce méme langage dont les sous-
formules atomiques sont particuliérement simples. C’est 'objet des points 2°)
a 4°).
2°) Si t; et t, sont des termes, les formules ¢, 1 ¢, et t; = t, sont équi-
valentes a

Az, 3z,[(zy =t ) A (Zy =) Az Lzy)] et Fzi3z,[(zi=t) A (za=1t) A (z1=2,)] .

Toute formule est donc équivalente a une autre dans laquelle les sous-
formules atomiques sont toutes de la forme t = x ou x L y ou ¢ est un
terme et x, y sont des variables.

3°) Comme Pred o S est I'identité, on peut se ramener au cas ou tous les
termes sont de la forme S'[Pred’(z)] ou z est une variable.

4°) On a déa vu (cf. 5.3) que tout singleton, et donc toute relation
finie ou cofinie, est définissable avec L et S ou Pred.

Comme S'[Pred’(z)] vaut i si z <jetvautz + i — jsi z > j, la formule
S'[Pred’(z)] = x est équivalente a:

I

[(x=2)r(z=))] v [(x=1)r(z<])] si 0=,
[(x=Pred/™ (@) a(z2/)] v [(x=D)alz<)] st i<},
[(x=S"12)r(z=j)] v [(x=0)A(z<))] sii> .

Ces formules sont de la forme [(t=x)aA(x)] v B(x,z) ou A et B sont
écrites avec Pred et 1, et t est un terme du type S¥z) ou Pred*(z).
Notons enfin que la formule x = x est toujours vraie et équivaut a
T(xLx); st k # 0, la formule x = S%x) est toujours fausse et équivaut a
(xLx) A 71(xLx), la formule x = Pred*(x) équivaut 4 x = 0.
On voit donc que

(*) Toute formule est équivalente a une formule dont les sous-formules
atomiques sont toutes de la forme x = Sy) ou x = Pred¥(y) ou encore
xL1lz ou x,y sont des variables distinctes, z une variable et k = 0.

5°) Notons enfin que la formule x = SXy) est équivalente & (y =Pred¥(x))

A (x=k), laquelle est de la forme (y=PredX(x)) » A(x), ot 4 est écrite avec
Pred et L (et sans égalité).
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De méme, la formule x = Pred*(y) est équivalente a4 (y=S*x)) v [(x=0)
~(y<k)], de la forme (y=Pred“(x)) » B(x,y) ou B est écrite sans égalité.
Ainsi, on peut donc échanger les sous-formules x = Pred¥y) et y = S4x),
modulo I'introduction d’autres sous-formules du langage (Pred, 1) ou (S, L).

6°) Le point 5°) montre qu’il suffit, pour prouver le Théoréme, de pouvoir
associer a toute formule F(x,, .., x,) du langage (S, Pred; =, 1) une formule
équivalente F'(xy,..,x,) qui est combinaison booléenne de formules du
langage (S, Pred, 1) et de formules du type S'(x) = y ou Pred(x) = y,
ou x,y sont des variables. Les points 2°) a 4°) montrent que 'on peut se
restreindre aux formules F(x,, .., x,) du langage (S, Pred; =, L) qui ont
la propriété (*).

La construction procéde alors par récurrence sur la complexité de F.

7°) L’initialisation de la récurrence indiquée en 6°) est I’étude du cas des
formules atomiques. Puisque F vérifie (*), les seuls cas a ¢étudier sont
x = S¥y), x = Pred¥y) et x L y; il est évident qu’il suffit de prendre alors F’
égale a F.

8°) L’étape d’induction de cette récurrence concerne lintroduction des
connecteurs et du quantificateur existentiel.

Le passage aux connecteurs est évident: (1 F) est 1(F’), etc.

Le passage au quantificateur existentiel est I'objet des points ci-dessous.

9°) Soit F(xy, .., Xx,,x,+;) une formule du langage (S, Pred, =, 1) pour
laquelle est d¢ja construite la formule équivalente F' de la forme indiquée
en 6°). On cherche a construire [3x, 1 F(xy, .., X,, X, 1)]"

Utilisant 5°) pour les “sous-formules Pred“(x;) = x;, S¥(x,,,) = x; et
Pred“(x,,,) = x; de F’, on voit que F’, et donc aussi F, équivaut & une
combinaison booléenne de formules du langage (S, Pred, L) et de formules
des types SHx;) = x;, S¥x;) = x,4+; et Pred¥(x;) = x,,;, ou i <p et
J<p.

Rappelons que toute combinaison booléenne de formules se ramene a une
disjonction de conjonctions de ces formules et de leurs négations. D’autre
part, toute conjonction (t; =x,4+1) A~ R(t5, X,+;) équivaut a

(ty=x,+1) ~ R(t;, t).
Enfin, toute conjonction (t; #x,. 1) A (t,#Xx,1) €quivaut a
[ty #x, ) Aty=t)] v [(E1 #Xpr DA (E2F X ) AL F#L) ]

Ceci montre que la formule F’, et donc aussi F, équivaut a la disjonction
d’'une famille de formules H,(Xy, .., X,) A Fy (X1, X,, X,41), 0 € A (A fini),
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ou H, est une conjonction de formules S¥x;) = x;,i < p,j < p, et de leurs
négations, et chacune des F, est de l'une des deux formes suivantes:

Ga(xl PR xp? xp+ 1) A [(Sa:xp+ l)]

ou Ga(xla"'> xp:xp+l) A [/\ (tu;éxp+l):| A [ /\ (tu¢tu)]

uelUy, ueU,,vely,usv
o G, est une formule du langage (S, Pred, 1), s, et t, sont des termes
de la forme S¥x;) ou Pred"(x;), avec i < p.

10°) Comme la quantification existentielle commute avec la disjonction, la
formule 3x,. F équivaut 4 la disjonction des 3x,.;(H, » F,,). La construction
de [3x,,,F]" peut ainsi étre ramenée a celle des [3x,, (H, A F,)]" (dont ce
sera la disjonction).

Comme H,(x,, .., x,) ne dépend pas de x,,,, la formule 3x,,(H,AF,)
équivaut a H,(x;, .., x,) ~ 3x,,.,F,. La construction de [3Ix,,(H,AF,)]
peut ainsi étre ramenée a celle de [Ix,,,F,]" (dont ce sera la conjonction
avec H,).

11°) Le cas ou F, est de la forme G, (x;, .., X,, X,+1) A L(s,=X,+1)] est
trivial: la formule dx,. ,F, équivaut alors a G(x,, .., X,, S,), laquelle est de

s Vpo Pu

la forme demandée en 6°) et peut étre prise pour [Ix,,,F,]"

12°) Etudions maintenant le cas ou F, est de la forme

Gu(xl> *eey xpa xp+1) A [/\ (tu#xp+l)] A [ /\ (tu#tu)]
uelU, uelUy, vely, uFv

D’apres la Proposition 4.11 1l existe une partie finie A de Z telle que la
relation définie par la formule G, soit (= ,)-saturée. La relation =, est
evidemment définissable dans le langage (S, Pred, 1). Pour tout entier
k > 1, l'ensemble {xeN: la classe de x pour =, contient exactement
k éléments} est (= ,)-saturé. Le Théoréme 4.10 assure donc quil est défi-
nissable par une formule, notée EQ,(x), du langage (S, Pred, 1). Si X est
un ensemble fini nous notons | X | le nombre de ses éléments. On considére
les formules 0, @, x et , x suivantes, ouue U, et X < U,:
N CperFats)s (= at)] A LA 0= 0t)] A LA @ F at)] A EQx(e,)
velU, veX w¢X
et

(et =t )] A LA 0] A TA G F )] A TEQy(t,) .

veX w¢X

La disjonction de ces formules, quand u varie dans U, et X dans les parties
de U,, est une tautologie.



176 S. GRIGORIEFF ET D. RICHARD

La construction de [3x,,,F,] peut ainsi &étre ramenée a celle des

[axp+ I(Foc/\e)]/a [axp+ l(FaA (pu, X)]la [pr+ 1(Foc/\ \Iju,X)], (dOIlt ce sera la
disjonction).

13°)  On observe que les clauses t, # x,,, de F, sont trivialement impliquées
par 0 et peuvent donc étre supprimées dans la formule F, A 0. Cette derniére
équivaut donc a G,(x,, .., x,,X,+1) A L, ou L, est la conjonction des
t, # t, (ou ne figure pas x,, ). Ainsi, 3x,,;(F,0) équivaut a L, » 3x,,,G,.
Il est clair que cette derniére formule est de la forme demandée en 6°)
et peut étre prise pour [Ix, . ;(F,A0)]"

14°)  On observe que la formule F, An ¢, x est toujours fausse car ¢, y
implique que la classe de t, pour =, est I’ensemble des ¢,,ve X, et donc
que x,,; est égal a l'un d’eux, ce qui contredit une des clauses de F,.
On peut donc prendre pour [3x,,,(F, A @, x)] une formule comme x; # x; .

15°) La relation définie par G, étant (= j)-saturée et VY, x impliquant
Xp+1 = 4 by, les formules G(x;, ..., X,, Xp1 1) A W, x €8 Gy(Xy, o, X, 8) A Wy
sont équivalentes. Notons p, y la conjonction des clauses t, = ,¢,,¢t, % 4ty
et TEQx(t,) de Y, x (veX et wgX). Cette formule assure que la classe
de ¢, pour = , contient un ¢lément z différent des ¢,, v € X. Un tel élément z
est nécessairement €galement difféerent des t,, w ¢ X (lesquels ne sont pas

dans la classe de t,). Ainsi, p, x implique 3z[(z= 4t,) A A (t,#2)].

veUy,

Observons que F, A\, x est équivalente a une formule de la forme

M (X1 5 e Xp) A [(Xp4 1 = 4t,)] A vgl\l (t,#xp+ 1]
ou M,, qui contient p, x, est la conjonction d’'une formule du langage
(S, Pred, L) et des ¢, # ¢, (ou ne figure pas x,, ).
On voit donc que 3x, (F, AV, x) équivaut a M (x,, ..., x,), laquelle peut
donc étre prise pour [3x,. ;(F AV, x)]" :
Fin de la preuve du Théoréme 6.5.

6.6. Une application du Théoreme 6.5 permet d’obtenir Iimplication
i) = iii)ter du Théoreme 4.8 (et ce, de fagon tout a fait constructive).

COROLLAIRE. Si + et x sont définissables dans la structure
(N; S, Pred; =, L> alors l'égalité 'est dans <{IN; S, Pred; L).

Preuve. Le Théoréme 6.5 montre que si la relation d’ordre x < y est
définissable avec S, Pred, = et L, elle 'est par une formule qui, mise
sous forme de disjonction de conjonctions, a la forme suivante
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V[F . A LA#x+] A [AG#y+)] A [N\ (y=x+k)]

iel, jedy keKy
A LA (x=y+1)]]
IeL,
ou F, est une formule ne faisant pas intervenir I'égalité.

Si K, ou L, contient plus d’un élément alors la clause associée a «
est impossible et peut donc étre supprimée. Si L, n’est pas vide ou si
K, contient 0 alors la clause associée a o contredit la condition x <y
et peut donc étre supprimée. Si K, = {k}, k = 1, alors la sous-formule
Vv = x + k implique x < y; ainsi, la clause associée a o peut, toute entiere,
étre remplacée par y = x + k.

Ceci permet de définir x < y sous la forme suivante:

[Vy=x+k] v VIFLG)) a TAG#x+D] A LA G2y +i).

1A iel, JjeJy

Soit M le supremum des éléments des J,.

Puisque la clause associée a o implique x < y, on voit que F(x, y) implique

(x<» v [V=x+i)]v [V(=y+j)]], qui implique aussi x < y + M.

isl, Jjedy

St F(x. y) est la disjonction des F,(x, y), on voit donc que

x<y=Fxyy=x<y+ M,

doux = y=F(x,v+1) A F(y,x+1)= |

VIS M+ 1

Le point iii) du Theoreme 2.11 permet alors de conclure que I'égalité x = y
est definie par la formule F(x, y+1) A F(y, x+1) A E(x, y) ot E(x, y) est la
formule. écrite avec S et L qui définit la relation x =0, ..u) ou k est
un premier supérieur a M.

§ 7. DEFINISSABILITE PAR SUCCESSEUR, COPRIMARITE
ET RESIDUATION QUADRATIQUE

7.1. Deésignons par RES et T les relations binaires

RES = {(x.p)eN x P: x est résidu quadratique modulo le premier P},

I'={(x,p)eN x P: - x est impair et Iexposant (peut-€tre nul) du
premier p dans la décomposition primaire de x est
pair} .

Le Théoreme de Stgrmer (cf. Corollaire 2.5, point ii) se traduit par le
lemme suivant:
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