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156 S. GRIGORIEFF ET D. RICHARD

3°) Des résultats nouveaux de définissabilité de I’addition et de la multi-
plication a partir de (S, +; L) oude (<, L) sur Z.

Il est a noter que S n’est pas définissable par addition et coprimarité
sur Z: en effet, x — (—x) est un automorphisme de Z qui respecte + et L
mais pas S.

§ 5. LA METHODE DE CODAGE ZBV ET LE PROBLEME DE J. ROBINSON

5.1.  La méthode de codage ZBV

Les Théorémes ZBV et LC (cf. 2.2 et 2.3) et leur Corollaire 2.4 permettent
des codages qui s’avérent particuliérement performants dans I’étude du
pouvoir de définissabilité des langages (S; 1) et (Pred; L).

La méthode de codage ZBV consiste a considérer comme codes d'un
entier  x les supports ou bien les diviseurs primitifs .des formes du type
p*t 1, ou p est premier.

On ramene ainsi certaines questions arithmétiques d la théorie des ensembles
finis de nombres premiers; en particulier, a des questions sur leur combinatoire.

Par ailleurs, chaque ensemble fini de nombres premiers (ou fonction de
domaine fini entre nombres premiers) est lui-méme codable (de multiples facons)
par un seul nombre premier via la méthode indiquée en 2.1 combinant le
Théoréme de Dirichlet et le Théoréme des restes chinois. Un tel code joue
alors le réle de mémoire dans laquelle est stocké ensemble fini de premiers
(ou la fonction) considéré(e).

5.2. Avant de passer a des applications de la méthode ZBV, nous montrons
quelques résultats simples sur la mise en place dans la structure (N; L)
d’éléments d’une théorie des ensembles finis par le biais des supports d’entiers:
I’ensemble de base est P, chaque partie finie X de P est codée par les
entiers ayant X pour Support.

La relation d’inclusion entre parties finies de P se traduit sur leurs codes
par la relation SUPP (x) = SUPP (y).
Comme cette inclusion entre supports a lieu si et seulement si tout entier
premier avec y est premier avec x, on voit quelle se traduit dans la
structure {N; L> par la formule Vz[(zLly)—>(zLlx)], notée SUPP (x)
< SUPP (y).
A partir de cette relation, on peut definir la relation d’égalité entre
supports et les opérations ensemblistes d’union, intersection et différence des
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supports. On obtient ainsi I'algébre ensembliste élémentaire sur les parties
finies de P.

5.3. On remarque ensuite qu’un entier x est primaire si et seulement si son
support est inclus dans celui de tout entier non premier avec lui.

On en déduit alors des formules qui définissent dans (IN; L) I'ensemble PP
des primaires et la relation {(x, y):x et y sont des puissances d’un méme
premier}. Notées respectivement PP(x) et PP(x, y), ce sont

Vy{["1(yLx)] - SUPP(x) = SUPP(y)} et PP(x) » PP(y) n T1(xL1y)

On observe enfin que les ensembles {1} et {0} sont (N; L)-définis par
les formules suivantes, notées respectivement Egal,(x) et Egaly(x):

Vy(yLlx) et Vy[(yLlx) — Egal,(y)].

On utilisera donc (cf. la Proposition 3.10) les constantes O et 1 dans le
cadre de tout langage contenant L.

Remarque. Lexemple 1 de 3.8 permet de voir que les singletons {0}
et {1} sont les seuls & pouvoir étre définis dans (IN; L.

54. On peut définir trés simplement le singleton {n}, n > 2, (et donc aussi
toute relation finie) dans la structure <{N;Pred; L) par la formule
Egal,[Pred” ™ (x)], notée Egal, (x).

On utilisera donc toutes les constantes entieres dans le cadre du langage
(Pred; L.

5.5. Nous montrons maintenant des applications simples — et fonda-
mentales — de la méthode ZBYV.

Le Théoréme 2.12 montre que pour des entiers primaires x et y, les trois
conditions x = y, X =5 1 ), X =(_, _1, ) sont équivalentes.
On en deduit des définitions de I’égalité restreinte au domaine PP dans les
structures {IN; §; L) et {N; Pred; L), notées toutes deux x =p,py:

PP(x,y) A SUPP[S(x)] = SUPP [S(y)] » SUPP [S*(x))] = SUPP [S%(»)],
PP(x, y) n SUPP [Pred(x)] = SUPP [Pred(y)] » SUPP [Pred?(x))]
= SUPP [Pred?(y))] .

A partir de ces formules, on obtient une définition dans (N;§; L)

de la restriction a PP de la fonction prédécesseur par la formule, notée
Predpp(x, y):
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[Egalo(x)—>Egalo(y)] ~ {{T1(Egalo(x)] - [x=ppS(y)1}

On obtient aussi une définition dans (N;Pred; L) de la restriction
a PP de la fonction successeur par la formule, notée Spp(x, y): —1(Egaly(y)]

A [x=ppPred(y)1}.

Remarques. 1°) Soit n > 0. La formule
PP(x) v PP[S(x)] v .. v PP[S"(x)]

définit 'ensemble PP + [—n, 0] dans (N; S; L)>. L’application du Corol-
laire 2.12 montre — comme plus haut — que Pégalité et la fonction
prédécesseur restreintes a cet ensemble sont définissables avec S et L.

2°)  De fagon analogue, avec Pred et L, c’est 'ensemble PP + [0, n] qui

est definissable, ainsi que I’égalité et la fonction successeur restreintes a
celui-ci.

5.6. On peut maintenant définir les singletons dans {(N; S; L>.
Soit n > 2 et soit p un premier plus grand que n. La condition x = n
équivaut a

(p —n)-ieme successeur de x = (p— 1)-ieme successeur de 1,

relation qui ne fait intervenir que la seule restriction de Pégalité a PP.

Ainsi, 'ensemble {n} est défini dans (N;S; L) par la formule S?~"(x)
= ppS? 7 1(1), notée Egal (x). On utilisera donc toutes les constantes entiéres
dans le cadre du langage (S; L).

5.7. Nous définissons maintenant (2 la suite de [RD1]) 'ensemble P des
nombres premiers dans chacun des langages (S; 1) et (Pred; L).

Le point ii) du Corollaire 2.4 montre que 'ensemble X des primaires x
tels que SUPP (x—1) < SUPP(y—1) pour tout primaire y de méme base
que x est égal a

X = Pu{(2“—1)*:u > 2 et l'entier 2* — 1 est premier} .
Cet ensemble X se définit dans (IN; §; 1) par la formule X(x) suivante:

PP(x) ~ YyVuVo{[PP(x, y) A Predpp(x, u) n Predpp(y, v)]
— SUPP (u) = SUPP (v)}

Comme (2“—1)? + 1 = 2[2*2* ' —1)+1], lentier (2“—1) + 1 est une
- puissance de 2 mais pas (2*—1)*> + 1. On voit ainsi que P se définit a
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partir de X comme suit: P = {x € X: s’ll existe ye X, y de méme base que x
et y # x alors x + 1 est une puissance de 2}

On en déduit alors une définition, notée P(x), dans <N;S; L) de len-
semble P:

X(x) A {[3z[X(z) A(z# ppx) rn PP(x, 2)]] —>PP(S(X), 2)1} .

Gréce au prédicat Spp, ces définitions se transférent simplement de la
structure (N;S; L> a la structure (N;Pred; L) donnant les formules,
notées également X(x) et P(x):

PP(x) A Vy{PP(x, y) — SUPP [Pred(x)] € SUPP [Pred(u)]} .
X(x) A {[3z[X(2) A(z# ppx) A PP(x, 2)]] — 3t [Spp(x, t) A PP(t, 2)1} .

5.8. La possibilit¢ de définir P par I'adjonction 2 1 de S ou bien Pred
permet de développer considérablement la théorie des parties finies de P
mise en place en 5.2 par le biais des supports d’entiers:

Toute la combinatoire ensembliste sur les supports s’exprime dans chacun des
langages (S; L) et (Pred; l).

La relation d’appartenance, traduite sur les codes par la relation
pe SUPP(x), est définie dans chacune des structures <(IN;S; 1> et
(N; Pred; L) par la formule P(p) A —1(pLx).

Nous montrons ci-dessous comment élargir le codage des parties finies
de P a un codage des relations et fonctions sur ces parties finies.

Pour k > 1 fixé, on note (A4,);<,<x une énumération des suites de
k + 1 parties de {1, 2, .., k}. Soit ® un entier premier plus grand que K.
Soient x,, ..., X, des entiers.

A tout (py, .., pr) € SUPP(xy) x .. x SUPP(x;) on associe — a l'aide du
Theoréeme de Dirichlet (cf. 2.1) — Tensemble infini X, , des entiers
premiers z > m qui vérifient les équations de congruences:

z = i(mod p;) pour les i tels que p; >k + 1,p; # m et p, # p; pour
touslesj < i,

z =k + 1(mod g) siqe[SUPP(x,)u..uSUPP(x,)]\{1, .. k+1,p;, .., pi, T},
z = o.(mod x) sid,est({i:p; = 2}, .., {i1p; = k + 1}, {i:p; = n}).
On voit simplement que les X, ., sont deux a deux disjoints.

Les Pred-codes d’une relation p sur SUPP (x;) x .. x SUPP(x,) sont
alors les entiers dont les supports coupent les seuls X pi....m tels que
(p1, - Px) € p. Les Pred-codes d’une fonction sont ceux de son graphe.
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Les S-codes d’une relation sont définis de fagon similaire avec les
ensembles Y, . obtenus en remplagant dans la définition de X,
les restes de congruences par leurs opposés.

sees P

PROPOSITION. Les relations

«(py, .- Px) appartient a la relation S-codée par x
sur SUPP (x;) x ... x SUPP(x,) »,

«(py, .- Px) appartient a la relation Pred-codée par x
sur SUPP (x;) x .. x SUPP (x;)»

sont respectivement définissables dans les structures (N;S;Ll> et
(N ; Pred; 1.

Preuve. La définition des X, ,, se traduit simplement en une définition
avec Pred et L de la relation {(xy, .., Xy, D1, Pi>2):2€ X, p)- DOU
I’assertion relative aux Pred-codes. Celle pour les S-codes se déduit de méme.

Les notions ensemblistes usuelles se traduisent alors en propriétés sur les
S-codes ou Pred-codes définissables avec S et 1, ou Pred et L.

En particulier, la notion d’injection entre supports d’entiers conduit a la
définissabilité de toute I'arithmétique sur les cardinalités des supports.

Notant | X | le nombre d’¢léments de X, on retrouve ainsi un résultat de
Woods:

CorOLLAIRE (Woods). 1°) Les images réciproques par la surjection
x+— | SUPP(x)| de N\{0} sur N des relations <, = et des graphes
de Tladdition et de la multiplication sont définissables dans les structures
{(N;S§; LY et {(N;Pred; L).

2°) La théorie Th(N;S; 1) (ensemble des énoncés s’¢crivant avec le suc-
cesseur et la coprimarité pour seuls symboles de fonction et prédicat)
est indécidable.

Remarque. La partie 2°) de ce Corollaire signifie que la vérité arithmé-
tique des énoncés avec successeur et coprimarité est aussi compliquée que
celle de tous les énoncés de l'arithmétique. C’est une condition évidemment
nécessaire a une réponse positive a la conjecture d’Erdos-Woods d’apres le
théoreme cité en 4.7.

5.9. Une autre application simple du Théoréme ZBV permet de définir
une fraction de la fonction exponentielle.
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La caractérisation donnée par le point iii) du Corollaire 2.4 de la notion
de diviseur primitif se traduit directement par des formules des langages
(S; 1) et (Pred; 1), notées toutes deux PRIMITIF (p, u).

Si p et q sont des nombres premiers distincts, I'entier g®*P@? est la seule
puissance u de g telles que p soit diviseur primitif de u — 1. Cette condition
s’exprime immédiatement avec la formule PRIMITIF (p, u), d’ou le résultat
survant.

PROPOSITION. On peut définir avec S et 1, ou bien Pred et L,
la relation ternaire

{(p, ¢, w): p et q sont premiers distincts et u = g°RP@ P}

5.10. Les deux propositions qui suivent sont des résultats techniques utiles
en 5.11. Soient p* un primaire de base p et x un entier tels que:
— SUPP (x) < SUPP (p*—1),

— Densemble SUPP (x) contient exactement un diviseur primitif de tout
p* — 1 qui admet un diviseur primitif et vérifie linclusion SUPP (pP—1)
< SUPP (p*—1).

Le point 11) du Corollaire 2.5 montre que

— s p* n'est pas le carré d’'un premier de Mersenne p = 2* — 1 et si
p # 2 ou bien p = 2 mais SUPP(2°—1) = {3,7} & SUPP (p*—1), alors le
cardinal de SUPP (x) est le nombre des diviseurs de o,

— sip = 2 et SUPP (26_—_1) = {3,7} = SUPP (p*—1), alors le cardinal de
SUPP (x) est le nombre des diviseurs de o diminué de 1,

— si p est de la forme 2* — 1 et p* = p? alors | SUPP (x)| = 1 tandis
que le nombre des diviseurs de o est 2.

Toutes les clauses précédentes sont exprimables avec S et L, ou Pred
et L. A laide du Corollaire 5.8, ceci conduit a:

PROPOSITION 1. On peut définir avec S et L, ou bien Pred et 1,
la relation

{(4, x): u est primaire et | SUPP (x) | est le nombre des diviseurs
de la valuation de u} .

En particulier, on peut aussi exprimer dans ces langages la relation

{(u, v): u et v sont primaires et leurs valuations ont le méme nombre
des diviseurs} .
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On peut alors montrer la Proposition suivante.

PROPOSITION 2. On peut définir avec S et L, ou bien Pred et L1,
la relation

{(p, @,) : p et g sont premiers et distincts et ORD (¢, p) = p — 1}.

Preuve. Comme pour tout r 'entier ORD (r, p) est toujours un diviseur
de p — 1, on voit que I’égalit¢ ORD (g, p) = p — 1 équivaut a la condition
« pour tout premier r [lentier ORD(r,p) wna pas plus de diviseurs que
ORD (g, p) ».

Cette derniere condition peut aussi s’écrire

« pour tout premier v la valuation de rORP"P)

que celle de gORP@ Py,

wa pas plus de diviseurs

Sous cette forme, la traduction dans les langages avec S ou Pred
est une application immeédiate de la Proposition 1 et de celle de 5.9.

5.11. La Proposition 2 précédente permet de définir maintenant une partie
importante de la fonction exponentielle. La preuve qui suit reprend et
simplifie celle de [RD1].

PROPOSITION. On peut définir avec S et 1, ou bien Pred et L,
la restriction de la fonction (p,q)+> q°~' a lensemble {(p,q):p et q
sont premiers et distincts}.

Preuve. Compte tenu de la Proposition 2 de 5.10, il suffit de définir
q*~ ! lorsque p et g sont des premiers distincts tels que ORD (g, p) < p — 1.

Soit w une puissance de g telle que SUPP (q°*P@P —1) = SUPP (w—1)
(Cest-a-dire de la forme ¢**°*P“ #) On pose

X, = {q*: SUPP (¢°*°«» _1) < SUPP (¢*—1) < SUPP (w—1)},
D(X,) = {r:r # p et r est diviseur primitif d’'un ¢* — 1 ou ¢* € X},
>(X,) = {z:z est premier, ORD(z,p) = p — 1l et z = g (mod r)
pour tout r € D(X,,)} .

Le théoréme de Dirichlet (cf. 2.2) (et le fait que la condition ORD (z, p)
= p — 1 soit impliquée par toute équation de congruence z = g (mod p),
~ou g est un entier tel que ORD(g,p) = p — 1) montre que l'ensemble
- 2(X,,) est infin1
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La définition de X(X,) montre que si zeX(X,) alors ORD(z, p)
= ORD(g,p) = p — 1 et ORD(z,r) = ORD(g, r). Ainsi, p est diviseur
primitif de z2~ ! et tout diviseur primitif de ¢* — 1 qui est different de p est
aussi primitif pour z* — 1 (et donc non primitif pour les 8 — 1 ou o # P).
En particulier, »

— sia#p—1alors ¢* — 1 n’a aucun diviseur primitif différent de p
et qui soit primitif pour z?7! — 1;

— si gP 'eX et sl existe un diviseur primitif de g?~' — 1 alors
celui-ci est différent de g et tel que SUPP (u—1) = SUPP (g—1);

3°) il existe un primaire w de base ¢ tel que SUPP (¢goRP@ P _1)
< SUPP (w—1) et u admet un diviseur primitif différent de p en commun
avec z2~! — 1 pour tout z de (X ).

On conclut la preuve en observant que ces conditions sont simplement
exprimables dans les langages (S; L) et (Pred; L).

COROLLAIRE. La restriction de la fonction x> 5% a lensemble P est
définissable dans la structure {(N;S; L.

Preuve. Le Corollaire 2.4 montre que 5" !

SUPP (5*—5) = {5} u SUPP (5"—1).

Cette condition permet donc de définir la fonction 5"+ 5""1 de
domaine 5N dans la structure (N;S; L)>. On conclut avec la Proposition
précedente, appliquée 4 g = 5.

est le seul primaire 5* tel que

5.12. PROPOSITION. La fonction x> 5* transforme la structure
(N; +5 x, =)

en une structure {(5N;NA,NM; =,,> qui est entiérement définissable
dans la structure (N;S; L.

En particulier, les structures <(N;S,x+ 5% 1> et (N;+, x: =>
définissent les mémes relations et fonctions.

Preuve. On a dé&a vu que la fonction 5"+ 5"*! de domaine 5N,
notée NS (pour Nouveau Successeur) est (S, 1)-définissable.

Le méme Corollaire 2.4 définit aussi directement la relation NDIV (pour
Nouvelle DIVisibilité) formée des couples (57, 5™ tels que n divise m.

Cette fonction et cette relation sont les images, par I'application x +— 5%,
de la fonction successeur et de la relation de divisibilité.




164 S. GRIGORIEFF ET D. RICHARD

Ainsi, on peut définir, au sein de la structure {N;S; L), une nouvelle
structure {5™; NS; NDIV) qui est isomorphe, via x+ 5%, a la structure
(N; S5 .

Le Théoreme de J. Robinson (cf. 4.5) assure que l'addition et la multi-
plication sont définissables dans <{N;S;|>. Les formules qui définissent
l'addition et la multiplication usuelles sur les entiers a partir de S et |
permettent alors de définir dans la structure (5N; NS;NDIV), et donc
a fortiori dans {N; S; L), les fonctions, notées NA et NM (pour nouvelles
addition et multiplication), qui sont les images des fonctions + et x par
I''somorphisme x — 5%,

Remarques. 1°) Le choix de la base 5 (plutdét que 2 ou 3) permet
d’eviter les exceptions au Théoréeme ZBV et a son Corollaire 3.4, lesquelles
ne concernent en effet que les bases 2 et 2% — 1.

2°) J. P. Jones nous a signalé I'article [RR] dans lequel R. M. Robinson
utilise également les modéles internes sur les puissances d’un premier fixé.
Il démontre que ceux-ci sont (S; |)-définissables.

3°) La (S; L1)-définissabilité de la fonction x — 5%, de domaine N, reste un
probléme ouvert (car équivalent a la conjecture E-W).

5.13. On peut maintenant prouver une partie essentielle du Théoreme
annonce en 4.10.

PROPOSITION. Soit p une vrelation définissable dans la structure
(N; 4+, x, =) Larelation Sat(p) obtenue en saturant p par la relation
Sy, (ou x =y signifie SUPP(x) = SUPP(y)) est définissable dans
les structures (N:S; 1> et (N;Pred; L).

Preuve. Soit F(x,, ..., X;) une formule qui définit p dans (N; +; x , =>.
L’isomorphisme Exps: x — 5* entre {N; +; x , =) et {(5N; NA,NM; =,p)
transforme p en 'ensemble 5° = {(5, ..., 5): (xy, .., X;) € p}, et cette image
est la partie de 5N définie dans la structure (5N;NA,NM; =p,> par la
méme formule F(x,, .., x,). Comme cette structure est définissable dans
(N;S;L> et {N;Pred; L), on voit que 5° est aussi définissable avec L
et S ou Pred. Notons SUPP la fonction support, qui envoie N\{0} dans
ensemble 2 /(P) des parties finies de P. L’isomorphisme Exps transforme
SUPP en la fonction NSUPP (nouveau support) qui envoie 5N% dans
Pensemble 2 ,(57) des parties finies de 5 de sorte que, notant EXPs la
restriction & 2 (P) de lextension de Exps aux parties, le diagramme (1)
soit commutatif:

A 3 Papee
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2 4(P) - @f(sp)

EXPs
Diagramme (1) SUPP— 1 T NSURR

N\{op - S\

Exps
On observe que

Sat(p) = SUPP![SUPP(p)]
= [EXPs.SUPP] ™ [EXP-SUPP] (p)
= [EXPs-SUPP] '[NSUPP-Exps] (p)
= [EXPs.SUPP]~![NSUPP] (5°)
Chacune des fonctions intervenant dans cette derniére égalité est (S; L)
et (Pred; L) définissable:
— C’est évident pour la fonction SUPP,

— ceci résulte de la Proposition 5.12 pour EXP5 (extension aux parties
de la restriction aux premiers de Exps),

— la fonction NSUPP, définissable dans <5V;NA,NM; =,p> lest
aussi avec (S; L) ou (Pred; 1).
La définissabilité de Sat(p) avec (S; L) ou (Pred; L) résulte alors de celle
de 5°.

5.14.  On peut enfin prouver le Théoréme annonceé en 4.10.

THEOREME. Soit A un ensemble d’entiers de Z. Soit p une relation
définissable dans la structure (N; 4+, x, =), incluse dans NF¥, et saturée
par la restriction d N de la relation déquivalence =, (ou x =,y
signifie SUPP (|x+i]) = SUPP (|y+i]) pour tout ie A, cf. 2.11).

1) Si A est fini alors p est définissable dans la structure (IN;S,PRED; 1.

i) Si A est fini et formé dentiers tous positifs ou nuls, alors p est
définissable dans la structure <(N;S; L.

) Si A est fini et formé dentiers tous négatifs ou nuls, alors p est
définissable dans la structure {N; Pred; 1.

Preuve. 1°) Le cas 4 = {0} est réglé par la Proposition 5.13. Le cas
ou A est vide est trivial car p est alors égal & N* tout entier.
Si a € Z on désigne par T, la translation x — Sup (x+a, 0) de N dans N.

Si A= {ay,..a,}, on note T, lapplication x> (T, (x), ..., T,(x)) de N
dans N".
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St B € Z, (la trace de) I’équivalence =, sur N s’étend de facon évidente
sur N". Pour toute relation t sur N on note Sat. (X) la relation obtenue
en saturant T pour (la restriction & N de) ’équivalence = 5.

Nous considerons d’abord le cas ou 4 = {a;, .., a,} = N.

2°) Remarquons que si x et y sont dans N alors T ,(x) =5 T4(y) si et
seulement si x = 4,5y, 00 A + B = {a + b:ae A et b e B}. En particulier,
T 4(x) =0 T 4(y) st et seulement si x =, y.

On observe enfin que, pour toute partie p de N¥, on a

Saty (p) = {(¥1, . Vi) 1l existe (xq, .., x;) € p tel que y; =, x;
pour 1 < i < k}

= {(Y1 , o Vi)t il existe (xy, ..., x;) € p tel que T 4(;) =0 T (x;)
pour 1 < i <k}

= (T4, - TH] '[Sats (T4, T (P)]]
(ou (T, .., T,) (p) est incluse dans N" "),

3°) Si p est définissable dans la structure {N; +, x ; =) alors la relation
Satz{o}[(TA,..., T,) (p)] Test aussi; étant =, saturée, elle est également
(d’apres la Proposition 5.13) définissable dans la structure {N; S; L ).

Par ailleurs, si a e N, Papplication T, n’est autre que litérée d’ordre a
de la fonction S. La fonction T, est donc une composée d’itérées de la
fonction S avec la fonction de brassage xt+(x, .., x) de N dans N"

D’apres la Proposition 3.6, la famille des relations définissables dans
(N;S;..)> est stable par image réciproque par T, (en termes logiques,
si F(x,, .., x,) définit T dans (N;S;..> alors [(T, .., T )] 1) y est défini
par la formule F[S%(x), ..., S*(x)]).

Remarque. Rappelons que lapplication S n’est pas — a priori —
(S; L)-définissable (cf. 3.5), il en est donc de méme de T .

Il en résulte que lensemble [(Ty, .., T )] '[Sate ([(T4, .. T.o) (P)1],
c’est-a-dire Sat. (p), est définissable dans la structure {N;S§; L). Si p est
saturée pour =, alors p = Sat. (p) et est donc (S; L)-définissable. Ceci

achéve la preuve de I’assertion 1i) du Théoreme.

4°) Considérons maintenant le cas ou A = {a,, .., a,} est formé d’éléments
tous négatifs ou nuls. Soit m le plus grand entier positif ou nul tel que
— m soit dans 4. On note M le saturé de {0, ..., m} pour = ,:

M = {xeN:il existe i € {0, .., m} tel que x =, i}.
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Si a <0 alors la fonction T, est constante de valeur O sur {0, .., a}
et sa restriction & N\{0,.., a} est injective et dimage N\{0}. On Voit
ainsi que si x > m alors T '(x)] = {x}.
De méme, si x >m et y > m (en particulier si x et y sont dans
N\M) alors, comme plus haut, T (x) =, T4(y) si et seulement si x =, y.
On remarque que pour toute partie T de N” on a

(N\M)? n Sat (1) = Sat. ,[(N\M)’N1]
= {V1s - yp) e (N\M)?:il existe (X150 X,) EMN\MP N T
tel que y; =, x; pour 1 < i < p}
= {(V1, - ¥p) € N\M)?: il existe (x4, ..., X,) e N\M)P N 1
tel que T 4(y;) =0y Talx;) pour 1 < i < p}
= [(T45 - T '[Sate o [(Ty, o Ta) (NAM)PNT]] .

5°) Si t est définissable dans (N; +, x ; =) alors la relation

Sate (T4, - T0) (N\M)?N1)]

=1{0}

(qui est incluse dans N"*¥) P’est aussi. Etant =, saturée, elle est également
(d’aprés la Proposition 5.13) définissable dans la structure {IN; Pred; 1 ).
Drautre part, si a < 0, Papplication T, n’est autre que l'itérée d’ordre | a |
de la fonction Pred. Comme en 3°), on voit que la famille des relations
définissables dans (N; Pred;..) est stable par image réciproque par T .
Ainsi,
[(TA> seey TA)]— l[Sat%{o}[(TA 5 wey TA) ((N\M)me)]:l >
c’est-a-dire (N\M)? n Sat. (1), est definissable dans la structure (N ; Pred; L ).
Cec1 prouve que

si. T < NP est saturée pour =, alors (N\M)’ nt est (Pred; l)-
définissable.
6°) Soit p une partie de N,

Si I = {iy,.,i}, ou i; <..<1i, est incluse dans {1, .., k}, on note
Proj; la fonction (x,, ..., x;) — (xll, s X;,) de N sur N,

Si T < N, on note Ext,(t) 'ensemble

Exty(t) = {(x;, .. ;) Proj;[(x;, .., x,)]et et x;eM
pour tout i € {1, ..., k}\I} .

Comme M est saturée pour =,, on voit que pour toute partie p de
N on a
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(*) Sat~ (p) = U Ext;[(N\M)?nProj,[Sat~ ,(p)]] .
IS{1,...,k}, p=|I
On note K; , I'ensemble K; , = {x > m: SUPP (x+a) = SUPP (li+a|)}.
Il est clair que si — m < a < 0 l'ensemble K; , est (Pred; L)-définissable.
Comme M = [Mn{0,1,..,m}JU[ |J [) K..], on en déduit que M est

1<i<maed
(Pred; 1)-définissable.
Il en résulte que si X est (Pred; L)-définissable alors il en est de méme
des Ext (X).

7°)  On peut maintenant achever la preuve du point iii)) du Théoréme.

~

Si p est saturée pour =, alors les Proj,[Sat. (p)] le sont aussi. Le
point 5°) montre que les (N\M)? n Proj;[Sat~ ,(p)] sont (Pred; L)-défi-
nissables, il en résulte que les Ext;[(N\M)?nProj;[Sat. (p)]] le sont aussi,
et donc également p.

8°) Dans le cas général ou 4 comprend des ¢léments positifs et d’autres
négatifs, on raisonne comme dans les points 4°) a 7°). Cependant, la fonction
T, est, dans ce cas, une composée d’itérées des deux fonctions S et Pred
avec la fonction de brassage x +— (x, ..., x) de N dans N”". Cest donc alors
la famille des relations définissables dans {IN; S, Pred;..> qui est stable par
image réciproque par T ,. D’ou la nécessité (a priori) d’introduire le langage
(S, Pred; 1).

§ 6. L’EGALITE ET LE PROBLEME DE J. ROBINSON

6.1. Le résultat ci-dessous — a priori technique — s’avere étre un outil
performant dans I’étude du rdle de I’égalite en face de S et L.

Définition. Soit A une partie finie de Z. Une relation p, incluse dans
NF*+1 est dite quasi-saturée pour =, si elle est saturée en toutes ses
variables sauf peut-étre la premiere, c’est-a-dire que lorsque x; =, y; pour
1 < i<k, alors les (k+1)-uplets (z, xq, ..., X¢) €t (z, yq, ..., i) sont simulta-
nément dans p ou hors de p:

Exemple. D’aprés la Proposition 2.13, toutes les parties de N x PP*
(ou PP est I'ensemble des primaires) sont quasi-saturées pour =, si A
contient {0, 1,2} ou {— 2, — 1, 0}.

LEMME. Soit A wune partie finie de Z. Soient py,..,p,,0 des
relations définissables dans la structure (N; +, x; =) et chacune quasi-
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saturée pour = ,. On suppose que © est incluse dans N? et que la
deuxiéme projection A de O (ie. A = {x,:il existe x tel que (x, x0)€0})
est une partie de N définissable dans <(N; S, Pred; L).

Si 1 est une relation définissable dans (N;S,Pred; L,p;i, ..., p,> et
incluse dans WN", alors les relations

T = {(Xg, X1, X,_1): il existe x tel que (x, xo) € 0 et (x, x4, ., X,—1) €T},

T = {(Xg» X1, Xp—1): Xo €A et, pour tout x, si (x, xo) € 0
alors (X, Xy, wy Xy—1) € T}

sont également définissables dans la structure <{N;§,Pred; L, ps, .., Pp)
(Cest-d-dire sans faire intervenir la relation 0).

Preuve. 1°) Le fait que A soit la deuxiéme projection de 0 et la quasi-
saturation de 6 pour =, montrent que A est (= ,)-saturé. Comme, rela-
tivement a T et t”, la variable x, varie dans A, on voit que t' et 1"
sont (= ,)-saturées par rapport a X .

2°) Si X est une partie de Z, posons T; ;(X) = {—j,...0} U [X+{i—j}].
Si u =y, x v alors (cf. la preuve de 4.11) on voit facilement que

— si x <jouy<jalors T; ;(X) contient — x ou — y et donc x = y,
— x+({—j) =xy + (i—))
Il en résulte que S'[Pred’(u)] =4 S[Pred’(v)].

3°) Par récurrence sur la complexite de la formule F(x,, xq, ..., X,_ ;) qui
définit v dans <{N; S, Pred; L, py, .., p,), on construit des formules F" et
F" qui définissent 1" et Tt dans cette méme structure.

L’é¢tape d’'induction, c’est-a-dire I'introduction des connecteurs et quanti-
ficateurs (qui, en termes ensemblistes (cf. 3.6), correspond aux opérations
booléennes et aux projections) est évidente: si D(x,) définit A avec S, Pred
et 1, alors

(Ax.F) est dx;(F'), (Fv G) est F' v G, (1 F) est 1(F") A D(x,);
(Vx.F)" est Vx,(F"), (FAG)" est F" A G",(T1F)" est 71(F') A D(x,) .

L’¢tape initiale de la récurrence concerne les formules atomiques, c’est-a-dire
les relations t qui sont images réciproques des relations L, R, ..., R, par les
composees des fonctions S et Pred avec les fonctions de brassage. Les termes
du langage (S, Pred; L,R,,..,R,) se raménent (aprés simplification des
Pred - §) a ceux de la forme t(x) = S’[Pred’(x)] ou x est une variable.
D’ou les différents cas considérés ci-dessous.
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4°) Casou F est t(xq) L u(x)
Dans ce cas 1t et ©” ne comportent quun seul argument et le point 1°)

montre qu’elles sont (= ,)-saturées et donc, d’apres le Théoreme 4.10,
definissables dans la structure {IN; S, Pred; L ).

5°) Casou F est tolxgy) L tixy)

Si le terme t,(x,) est S'[Pred’(x,)] alors la (= ,,)-saturation de L implique la
(= 1, yop)-saturation par rapport a x; de la relation t et donc aussi de v
et t". Compte tenu de 1°), les relations 7 et 17 sont (=g, opa)-saturées, et
donc (Théoreme 4.10) définissables dans {IN; S, Pred; L ).

6°) Cas ou F(Xg, X15 e Xp—1) est R, (t1[Xs(1)1s s L [ X)) ou
l<a<p—1lo:{1,.,k}—{0,.,n—1} et o) =0.

Stot; Jr(xc(,)) est S"[Pred’(x,;)], on pose B = T, ;(A) U .. Ty i, (A).
De la (= ,)-quasi-saturation de linterprétation p, de R,, on dedult la
(= g)-saturation de t par rapport aux variables x; telles que i # o(l) =
et donc aussi le méme résultat relatif a 1" et t". Le point 1°) assure alors

que T et v’ sont (=5 4)-saturées et donc (Théoréme 4.10) définissables dans
(N; S, Pred; L.

7% Cas ou  F(xg, Xy, . Xp—1) est  Ry(ti[Xgu)ls o b [Xoayl) ou 1 < a
<p-— Lo {l,.,k}—{0,.,n—1} et o(l) #0.
Soit B défini comme au point 6°). On pose

L = {(z, xo): il existe x tel que z =5 x et (x, x,) € 0} .

Comme 0 est (= ,)-quasi-saturée, A est (=g, 4)-saturée et donc (Théoreme 4.10)
définissable dans {(N; S, Pred; L ). La (£ ,)-quasi-saturation de p, montre la
(= p)-saturation de 1t par rapport aux variables x; telles que i # o(1), en
particulier celles telles que o(i) = 0 (car o(1) # 0). On a donc

4

T = {(Xg, X1, X,—1): il existe x tel que (x, xo) €0 et (y;, .., )€ p, OU
y; vaut t;[x.] si o(i) # 0 et vaut t,[x] si o(i) = 0},
= {(Xg, X1, X,—1): 1l existe z tel que (z, xo) €A et (yy, .., i) € P OU
y; vaut t;[ x4, ] si o(i) # 0 et vaut t;[z] si o(i) = 0}.

14

T = {(Xg, X1, Xp—1): Xo € A et pour tout x, si (x, x,) € 0 alors
(V15 - Vi) € Py OU y; vaut £;[x,] si o(i) # 0 et vaut
L[] si o) = 0},

= {(x0, X1, Xp—1): Xo €A et pour tout z, si (z, x,) € A alors
(V15 - Vi) € Py OU y; vaut t;[x1 st o(i) # 0 et vaut
t;[z] si o(i) = 0}.
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Ces égalités donnent des définitions de ©° et t” a partir de A, A et p,,
et donc (puisque A et L sont définissables avec S, Pred et 1) des defi-
nitions de ' et t° dans {(N; S, Pred; L, p,)-

6.2. Le résultat suivant est une extension du Théoréme de Woods sur
équivalence du Probléme de Robinson et de la (S; 1)-définissabilité de
I’égalité.

THEOREME. Soient P, .., Py, @1 @, des relations et fonctions défi-
nissables dans (N; +, x; =>. On suppose que pi,..,p, et les graphes
de ¢y,.., ¢, sont quasi-saturés pour =, ou A est une partie finie
de Z (cest le cas, en particulier, si ces relations et graphes sont inclus
dans un produit N x [PP*+B] ou B est une partie finie de Z.).

Si légalité est définissable dans <(IN; S, Pred, @i, ..., 9,5 L, p1s o Pp)
(resp. NS, @1y @3 L, Py Py resp. (N Pred, @4, o, 045 L, pys ooy Pp))
alors cette structure définit les mémes relations et fonctions que {(N; +, X ; =).

Preuve. Appliquons le Lemme 6.1 avec les relations p; et les graphes
des @;, et, pour 1 la relation d’égalité, pour 0 le graphe de la fonction
x > 5% (graphe qui est bien quasi-saturé puisque son second argument est
toujours un primaire). On observe que T est I'image de 0 par la fonction
de brassage (x,y)+— (y,x). La {(N;S§,Pred; L, py, ..., pp, Gr{(®y), ... GHP,))-
définissabilité de t’, et donc de O, permet de conclure a celle de + et X,
grace a la Proposition 5.12.

On acheve la preuve en observant que la définissabilité¢ de I’égalité dans
la structure <{N;§, Pred, @, .., @;; L, py,.., pp,y montre I'équivalence de
cette structure et de <N; §, Pred; L, py, ..., p,, Gr{(@,), ... Gr{(p,)).

On remarque enfin que si I'égalite est définissable avec les p;, @;,
L et S sans l'aide de Pred (resp. avec Pred sans l'aide de S) alors la
fonction Pred (resp. S) I’est aussi.

Remarque. Considérant pour p la relation d’égalité, on voit que la

condition de quasi-saturation des p, ne peut pas étre levée dans le Lemma 6.1
ni dans le present Théoreme (sauf si la conjecture d’Erdds-Woods est vraie !).

6.3. Une application simple du Théoréme 6.2 est la suivante:

THEOREME. Soit J wune injection de domaine N & valeurs dans les
primaires et définissable dans <(N; +, x ; =>.
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Les trois structures <{N;S,J; L), {N;Pred,J; L) et {N; +, x;=>
définissent les mémes relations et fonctions.

Preuve. La relation d’égalité est définissable dans la structure (N; S, J; L>
par la formule J(x) =pp J(y) (cf. 5.5 pour la définition de = pp). On conclut
en appliquant le Théoréme 6.2 avec pour p le graphe de J (qui est quasi-
saturé car a valeurs dans les primaires).

6.4. Une autre application simple du Théoréme 6.2 est la suivante:

Soit EXP la relation binaire EXP = {(x, y): il existe a > 0 tel que y = a*}.

THEOREME. Les trois structures {(N;S; L, EXP> (N;S; L,EXP)> et
(N; +, x; =) définissent les mémes relations et fonctions.

Preuve. On considere seulement le cas (S; L, EXP). Soit 4 I’ensemble
A = EXP n [NxPP] = {(x,p"): xe N et pe P}. On observe que I’égalité
x = y équivaut a l’existence d’un z tel que (x,z) et (y, z) soient dans A.
L’egalité est donc définissable dans la structure {<IN; S; 1L, 4).

Comme A4 est incluse dans N x PP, elle est quasi-saturée pour =, ; ),
et le Théoréme 6.2 montre que + et x sont définissables dans la structure
(N;§; L, A>. On conclut en remarquant que la relation A4 est elle-méme défi-
nissable dans la structure (\N; §; L, EXP) par la formule PP(y) A EXP(x, y).

6.5. Le Théoreme ci-dessous est un fait curieux que 'on peut énoncer ainsi:

bien qu’il apparaisse difficile de la définir avec successeur et coprimarité,
la relation d’égalité wa pourtant pas un pouvoir de définissabilité important,
sa contribution — en face de S et 1 — se limite a se définir elle-méme
ainsi que le graphe des itérés de S et elle n’est pas en mesure dutiliser la
puissance des quantifications!

THEOREME. Toute formule du langage (S, Pred; =, 1) équivaut a une
combinaison booléenne de formules du langage (S, Pred; 1) — formules sans
égalité — et de formules du type x = S'(y) (resp. x = Predi(y))
— formules sans quantificateur —.

En termes ensemblistes, la classe des relations (N;§,Pred; =, L)>-défi-
nissables coincide avec la classe des relations obtenues par combinaisons
booléennes

— des relations définissables dans la structure {(N; S, Pred; L),




CODAGE ZBV 173

— des graphes des itérées de la fonction successeur (resp. prédécesseur)
et leurs images réciproques par les fonctions f, . p: (X1, s Xp) > (Xo, Xp)
ou 1<a<pl<B<pa#dp

Preuve. 1°) On commence par montrer que toute formule du langage
(S, Pred; =, 1) équivaut 4 une formule de ce méme langage dont les sous-
formules atomiques sont particuliérement simples. C’est 'objet des points 2°)
a 4°).
2°) Si t; et t, sont des termes, les formules ¢, 1 ¢, et t; = t, sont équi-
valentes a

Az, 3z,[(zy =t ) A (Zy =) Az Lzy)] et Fzi3z,[(zi=t) A (za=1t) A (z1=2,)] .

Toute formule est donc équivalente a une autre dans laquelle les sous-
formules atomiques sont toutes de la forme t = x ou x L y ou ¢ est un
terme et x, y sont des variables.

3°) Comme Pred o S est I'identité, on peut se ramener au cas ou tous les
termes sont de la forme S'[Pred’(z)] ou z est une variable.

4°) On a déa vu (cf. 5.3) que tout singleton, et donc toute relation
finie ou cofinie, est définissable avec L et S ou Pred.

Comme S'[Pred’(z)] vaut i si z <jetvautz + i — jsi z > j, la formule
S'[Pred’(z)] = x est équivalente a:

I

[(x=2)r(z=))] v [(x=1)r(z<])] si 0=,
[(x=Pred/™ (@) a(z2/)] v [(x=D)alz<)] st i<},
[(x=S"12)r(z=j)] v [(x=0)A(z<))] sii> .

Ces formules sont de la forme [(t=x)aA(x)] v B(x,z) ou A et B sont
écrites avec Pred et 1, et t est un terme du type S¥z) ou Pred*(z).
Notons enfin que la formule x = x est toujours vraie et équivaut a
T(xLx); st k # 0, la formule x = S%x) est toujours fausse et équivaut a
(xLx) A 71(xLx), la formule x = Pred*(x) équivaut 4 x = 0.
On voit donc que

(*) Toute formule est équivalente a une formule dont les sous-formules
atomiques sont toutes de la forme x = Sy) ou x = Pred¥(y) ou encore
xL1lz ou x,y sont des variables distinctes, z une variable et k = 0.

5°) Notons enfin que la formule x = SXy) est équivalente & (y =Pred¥(x))

A (x=k), laquelle est de la forme (y=PredX(x)) » A(x), ot 4 est écrite avec
Pred et L (et sans égalité).
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De méme, la formule x = Pred*(y) est équivalente a4 (y=S*x)) v [(x=0)
~(y<k)], de la forme (y=Pred“(x)) » B(x,y) ou B est écrite sans égalité.
Ainsi, on peut donc échanger les sous-formules x = Pred¥y) et y = S4x),
modulo I'introduction d’autres sous-formules du langage (Pred, 1) ou (S, L).

6°) Le point 5°) montre qu’il suffit, pour prouver le Théoréme, de pouvoir
associer a toute formule F(x,, .., x,) du langage (S, Pred; =, 1) une formule
équivalente F'(xy,..,x,) qui est combinaison booléenne de formules du
langage (S, Pred, 1) et de formules du type S'(x) = y ou Pred(x) = y,
ou x,y sont des variables. Les points 2°) a 4°) montrent que 'on peut se
restreindre aux formules F(x,, .., x,) du langage (S, Pred; =, L) qui ont
la propriété (*).

La construction procéde alors par récurrence sur la complexité de F.

7°) L’initialisation de la récurrence indiquée en 6°) est I’étude du cas des
formules atomiques. Puisque F vérifie (*), les seuls cas a ¢étudier sont
x = S¥y), x = Pred¥y) et x L y; il est évident qu’il suffit de prendre alors F’
égale a F.

8°) L’étape d’induction de cette récurrence concerne lintroduction des
connecteurs et du quantificateur existentiel.

Le passage aux connecteurs est évident: (1 F) est 1(F’), etc.

Le passage au quantificateur existentiel est I'objet des points ci-dessous.

9°) Soit F(xy, .., Xx,,x,+;) une formule du langage (S, Pred, =, 1) pour
laquelle est d¢ja construite la formule équivalente F' de la forme indiquée
en 6°). On cherche a construire [3x, 1 F(xy, .., X,, X, 1)]"

Utilisant 5°) pour les “sous-formules Pred“(x;) = x;, S¥(x,,,) = x; et
Pred“(x,,,) = x; de F’, on voit que F’, et donc aussi F, équivaut & une
combinaison booléenne de formules du langage (S, Pred, L) et de formules
des types SHx;) = x;, S¥x;) = x,4+; et Pred¥(x;) = x,,;, ou i <p et
J<p.

Rappelons que toute combinaison booléenne de formules se ramene a une
disjonction de conjonctions de ces formules et de leurs négations. D’autre
part, toute conjonction (t; =x,4+1) A~ R(t5, X,+;) équivaut a

(ty=x,+1) ~ R(t;, t).
Enfin, toute conjonction (t; #x,. 1) A (t,#Xx,1) €quivaut a
[ty #x, ) Aty=t)] v [(E1 #Xpr DA (E2F X ) AL F#L) ]

Ceci montre que la formule F’, et donc aussi F, équivaut a la disjonction
d’'une famille de formules H,(Xy, .., X,) A Fy (X1, X,, X,41), 0 € A (A fini),
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ou H, est une conjonction de formules S¥x;) = x;,i < p,j < p, et de leurs
négations, et chacune des F, est de l'une des deux formes suivantes:

Ga(xl PR xp? xp+ 1) A [(Sa:xp+ l)]

ou Ga(xla"'> xp:xp+l) A [/\ (tu;éxp+l):| A [ /\ (tu¢tu)]

uelUy, ueU,,vely,usv
o G, est une formule du langage (S, Pred, 1), s, et t, sont des termes
de la forme S¥x;) ou Pred"(x;), avec i < p.

10°) Comme la quantification existentielle commute avec la disjonction, la
formule 3x,. F équivaut 4 la disjonction des 3x,.;(H, » F,,). La construction
de [3x,,,F]" peut ainsi étre ramenée a celle des [3x,, (H, A F,)]" (dont ce
sera la disjonction).

Comme H,(x,, .., x,) ne dépend pas de x,,,, la formule 3x,,(H,AF,)
équivaut a H,(x;, .., x,) ~ 3x,,.,F,. La construction de [3Ix,,(H,AF,)]
peut ainsi étre ramenée a celle de [Ix,,,F,]" (dont ce sera la conjonction
avec H,).

11°) Le cas ou F, est de la forme G, (x;, .., X,, X,+1) A L(s,=X,+1)] est
trivial: la formule dx,. ,F, équivaut alors a G(x,, .., X,, S,), laquelle est de

s Vpo Pu

la forme demandée en 6°) et peut étre prise pour [Ix,,,F,]"

12°) Etudions maintenant le cas ou F, est de la forme

Gu(xl> *eey xpa xp+1) A [/\ (tu#xp+l)] A [ /\ (tu#tu)]
uelU, uelUy, vely, uFv

D’apres la Proposition 4.11 1l existe une partie finie A de Z telle que la
relation définie par la formule G, soit (= ,)-saturée. La relation =, est
evidemment définissable dans le langage (S, Pred, 1). Pour tout entier
k > 1, l'ensemble {xeN: la classe de x pour =, contient exactement
k éléments} est (= ,)-saturé. Le Théoréme 4.10 assure donc quil est défi-
nissable par une formule, notée EQ,(x), du langage (S, Pred, 1). Si X est
un ensemble fini nous notons | X | le nombre de ses éléments. On considére
les formules 0, @, x et , x suivantes, ouue U, et X < U,:
N CperFats)s (= at)] A LA 0= 0t)] A LA @ F at)] A EQx(e,)
velU, veX w¢X
et

(et =t )] A LA 0] A TA G F )] A TEQy(t,) .

veX w¢X

La disjonction de ces formules, quand u varie dans U, et X dans les parties
de U,, est une tautologie.
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La construction de [3x,,,F,] peut ainsi &étre ramenée a celle des

[axp+ I(Foc/\e)]/a [axp+ l(FaA (pu, X)]la [pr+ 1(Foc/\ \Iju,X)], (dOIlt ce sera la
disjonction).

13°)  On observe que les clauses t, # x,,, de F, sont trivialement impliquées
par 0 et peuvent donc étre supprimées dans la formule F, A 0. Cette derniére
équivaut donc a G,(x,, .., x,,X,+1) A L, ou L, est la conjonction des
t, # t, (ou ne figure pas x,, ). Ainsi, 3x,,;(F,0) équivaut a L, » 3x,,,G,.
Il est clair que cette derniére formule est de la forme demandée en 6°)
et peut étre prise pour [Ix, . ;(F,A0)]"

14°)  On observe que la formule F, An ¢, x est toujours fausse car ¢, y
implique que la classe de t, pour =, est I’ensemble des ¢,,ve X, et donc
que x,,; est égal a l'un d’eux, ce qui contredit une des clauses de F,.
On peut donc prendre pour [3x,,,(F, A @, x)] une formule comme x; # x; .

15°) La relation définie par G, étant (= j)-saturée et VY, x impliquant
Xp+1 = 4 by, les formules G(x;, ..., X,, Xp1 1) A W, x €8 Gy(Xy, o, X, 8) A Wy
sont équivalentes. Notons p, y la conjonction des clauses t, = ,¢,,¢t, % 4ty
et TEQx(t,) de Y, x (veX et wgX). Cette formule assure que la classe
de ¢, pour = , contient un ¢lément z différent des ¢,, v € X. Un tel élément z
est nécessairement €galement difféerent des t,, w ¢ X (lesquels ne sont pas

dans la classe de t,). Ainsi, p, x implique 3z[(z= 4t,) A A (t,#2)].

veUy,

Observons que F, A\, x est équivalente a une formule de la forme

M (X1 5 e Xp) A [(Xp4 1 = 4t,)] A vgl\l (t,#xp+ 1]
ou M,, qui contient p, x, est la conjonction d’'une formule du langage
(S, Pred, L) et des ¢, # ¢, (ou ne figure pas x,, ).
On voit donc que 3x, (F, AV, x) équivaut a M (x,, ..., x,), laquelle peut
donc étre prise pour [3x,. ;(F AV, x)]" :
Fin de la preuve du Théoréme 6.5.

6.6. Une application du Théoreme 6.5 permet d’obtenir Iimplication
i) = iii)ter du Théoreme 4.8 (et ce, de fagon tout a fait constructive).

COROLLAIRE. Si + et x sont définissables dans la structure
(N; S, Pred; =, L> alors l'égalité 'est dans <{IN; S, Pred; L).

Preuve. Le Théoréme 6.5 montre que si la relation d’ordre x < y est
définissable avec S, Pred, = et L, elle 'est par une formule qui, mise
sous forme de disjonction de conjonctions, a la forme suivante
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V[F . A LA#x+] A [AG#y+)] A [N\ (y=x+k)]

iel, jedy keKy
A LA (x=y+1)]]
IeL,
ou F, est une formule ne faisant pas intervenir I'égalité.

Si K, ou L, contient plus d’un élément alors la clause associée a «
est impossible et peut donc étre supprimée. Si L, n’est pas vide ou si
K, contient 0 alors la clause associée a o contredit la condition x <y
et peut donc étre supprimée. Si K, = {k}, k = 1, alors la sous-formule
Vv = x + k implique x < y; ainsi, la clause associée a o peut, toute entiere,
étre remplacée par y = x + k.

Ceci permet de définir x < y sous la forme suivante:

[Vy=x+k] v VIFLG)) a TAG#x+D] A LA G2y +i).

1A iel, JjeJy

Soit M le supremum des éléments des J,.

Puisque la clause associée a o implique x < y, on voit que F(x, y) implique

(x<» v [V=x+i)]v [V(=y+j)]], qui implique aussi x < y + M.

isl, Jjedy

St F(x. y) est la disjonction des F,(x, y), on voit donc que

x<y=Fxyy=x<y+ M,

doux = y=F(x,v+1) A F(y,x+1)= |

VIS M+ 1

Le point iii) du Theoreme 2.11 permet alors de conclure que I'égalité x = y
est definie par la formule F(x, y+1) A F(y, x+1) A E(x, y) ot E(x, y) est la
formule. écrite avec S et L qui définit la relation x =0, ..u) ou k est
un premier supérieur a M.

§ 7. DEFINISSABILITE PAR SUCCESSEUR, COPRIMARITE
ET RESIDUATION QUADRATIQUE

7.1. Deésignons par RES et T les relations binaires

RES = {(x.p)eN x P: x est résidu quadratique modulo le premier P},

I'={(x,p)eN x P: - x est impair et Iexposant (peut-€tre nul) du
premier p dans la décomposition primaire de x est
pair} .

Le Théoreme de Stgrmer (cf. Corollaire 2.5, point ii) se traduit par le
lemme suivant:
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LEMME. L’égalité des entiers impairs x et y équivaut da la condition
suivante (ou € vaut, au choix, 1 ou bien — 1):

SUPP(x) = SUPP(y) et SUPP(x+2¢) = SUPP(y+2¢) et, pour
tout p premier et tout i€ {0,2}, les couples (x+¢ei,p) et (y+é&i,p)
sont simultanément dans T ou hors de T.

7.2. THEOREME. Les structures <{(N;S;L,T>, {(N;Pred; L, T> et
(N; +, x; =) définissent les mémes relations et fonctions.

Preuve. Le Lemme 7.1 fournit des définitions dans les langages
(Pred; L, T) et (S; L, T) de la relation d’égalité restreinte aux entiers
impairs. On en déduit simplement des définitions dans ces langages de la
relation d’égalité tout entiére. On conclut enfin en appliquant le Théoreme 6.2
puisque, la seconde variable de T variant dans P, la relation T est quasi-sature
(cf. Exemple 6.1).

7.3. Nous allons maintenant définir la relation T dans le langage (S; L, RES).

PrOPOSITION. La relation T  est définissable dans les structures
(N;S; 1L,RES) et (N;Pred; L, RES).

Preuve. Soient x un entier impair difféerent de 1 et p un diviseur
premier de x. Le Lemme 2.13 montre que l'exposant de p dans x est pair
si et seulement s’il existe un entier premier g ne divisant pas x et tel que
les conditions suivantes soient simultanément satisfaites:

(et e B« ()

pour tout  p’ € SUPP (x)\{p} .

Comme [Pégalité sur les premiers s’exprime dans les langages (Pred; 1)
et (S; L) (cf. 5.5) cette caractérisation sécrit dans (Pred; L, T, RES) et
dans (S; L, T, RES).

COROLLAIRE. Les structures <(N;S; L,RES), (N;Pred; L, RES) et
(N; +, x; =) définissent les mémes relations et fonctions.

7.4. L analyse de la preuve précédente et de celle du Lemme 2.3 suggere
qu'on peut remplacer RES par diverses restrictions. Nous utiliserons au § 8
la restriction suivante de la relation RES:
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RRES = RES n N x [8N+75]

= {(x,p)eN x P:p=5(mod8) et x est residu quadratique
modulo p}

L’intérét de restreindre RES a 8N + 5 tient a ce que ¢ — 1 est de la forme
42k + 1) lorsque g est lui-méme de la forme 8k + 5.
Le Corollaire 7.3 précédent s’adapte simplement:

THEOREME. Les structures <{N;S; L, RRES), (N; Pred; L, RRES) et
(N; +, x; =) définissent les mémes relations et fonctions.

Preuve. En changeant, dans la preuve du Lemme 2.13, ’équation
z=1(mod4) en z = 5(mod 8), on peut supposer que l'entier premier ¢
obtenu dans ce lemme satisfait I’équation g = 5 (mod 8).

Ceci permet alors de remplacer RES par RRES dans la traduction utilisée
dans la preuve de la Proposition 7.3.

§ 8. DEFINISSABILITE PAR SUCCESSEUR, COPRIMARITE
ET LA RELATION BINAIRE « y EST UNE PUISSANCE DE X »

8.1. Nous considérons maintenant la relation binaire
PUIS = {(x, y): il existe n > 1 tel que y = x"}.

Remarquons que la relation d’égalité se définit facilement dans le langage
réduit au seul prédicat PUIS par la formule PUIS (x, y) A PUIS(y, x).

Les fonctions S et Pred sont donc définissables I'une a partir de lautre
avec PUIS.

THEOREME. Les deux structures (N;S; L, PUISY et (N;+, x; =)
définissent les mémes relations et fonctions.

Remarque. Bien siir, le Théoréme 6.2 n’est pas directement applicable
car PUIS n’est pas — a priori — quasi-saturé pour un = .
Ce Théoreme est un corollaire immédiat du Théoréme 7.4 et de la

Proposition suivante, dont la preuve est 'objet des alinéas 8.2 a 8.5
ci-dessous.
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ProrosITION.  La relation RRES est définissable dans {(IN;S; L, PUIS).

8.2. Le Corollaire 2.4 (point ii) du Théoréme ZBV montre que I’égalité
y = x? équivaut a la condition

(*) x=y=0 ou x=y=1 ou bien y est une puissance de x et
y # x et SUPP (y—1) = SUPP (x*—1).

Comme SUPP (x*—1) = SUPP(x+1) u SUPP (x—1), on peut exprimer
dans le langage (S, Pred; L) la relation SUPP (y—1) = SUPP (x*—1).

Comme Pred est exprimable avec S et PUIS, on voit que (*) donne une
définition de la fonction x — x? dans le langage (S; L, PUIS).

8.3. Si p est premier et ne divise pas x, nous notons ORD (x, p) ordre de x
modulo p.

Rappelons que x* = xORP&™P i et seulement si p est diviseur pri-
mitif de x* — 1. La caractérisation donnée par le point 11) du Corol-
laire 2.4 de la notion de diviseur primitif donne alors une définition de la
- fonction (x, p) — xO"P* P2 gqur le domaine {(x,p): x > 2, p est premier et
ne divise pas x} dans le langage (Pred; =, L, PUIS) et donc aussi dans
(S; L, PUIS).

8.4. Soient A et B les relations suivantes:
A = {(x, p): p est premier et divise x, ou x < 1},
B = {(x,p): x = 2, p est premier et ne divise pas x, et p = 5 (mod 8§)}.
On observe que I'on a I’égalité
RRES = [AN[Nx(Pn8N+5)]] u [BARES].

La relation A est évidemment (S; 1)-définissable, 'ensemble P n 8N + 5,
inclus dans P, 'est aussi (Théoreme 4.8 ou 4.9). Ainsi, le premier terme de
cette union est (S; L)-définissable.

Le méme argument montre que la relation B est (S; L)-définissable.

8.5. Nous montrons que B n RES est (S; L, PUIS)-définissable.
Soit (x, p) dans B, le critéere d’Euler sur les résidus quadratiques montre que

(1)  (x,p)eRES sietseulementsi x®~ 1?2 = 1 (mod p)
si et seulement si  ORD (x, p) divise (p—1)/2.
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Puisque p = 5(mod 8), Tentier p — 1 est de la forme p — 1 = 4(2k+1).
Puisque ORD (x, p) divise toujours p — 1, I'équivalence (1) devient alors
(2) (x, p) € RES si et seulement si 4 ne divise pas ORD (x, p).

Le point ii) du Corollaire 2.4 du Théoréme ZBV montre que (2) peut aussi
s’écrire

(3) (x,p)e RES si et seulement si SUPP (x*—1) & SUPP [x°*P&P 17
Ceci prouve I'égalité

4) CnRES = {(x,p) e C: SUPP (x*—1) & SUPP [xORPP _17},

Les résultats de 8.2 et 8.3 permettent alors de traduire cette égalité en une

définition de la relation C » RES dans le langage (S; L, PUIS).
Ceci acheéve la preuve de la Proposition 8.1 et donc du Théoreme 8.1.

8.6. Probléeme ouvert. Peut-on remplacer dans le Théoréme 8.1 le prédicat
PUIS par la relation y = x*?

§ 9. DEFINISSABILITE PAR SUCCESSEUR, COPRIMARITE
ET RESTRICTIONS DE L’ADDITION, DE LA MULTIPLICATION OU DE LA DIVISION

9.1. Nous allons maintenant donner les prédicats les plus faibles que nous
connaissions qui, joints au successeur et a la coprimarité, permettent de
définir toute I'arithmétique.

Si X = N?, on note X-ADD et X-MULT les graphes des restrictions de
I'addition et de la multiplication a X :

X-ADD = {(x,y,2):(x,y)eX et z=x+y}.
X-MULT = {(x,y,2):(x,y)e X et 2z = xy}.

Dans toute la suite, la premiére projection de X sera toujours égale @ N
tout entier. La relation d’égalite se définit alors facilement dans le langage
reduit au seul prédicat X-ADD (resp. X-MULT): x = x’ si et seulement si

{(p y): (x, p, y) € X-ADD} = {(p, y): (¥, p, y) € X-ADD} .

Les fonctions S et Pred sont donc définissables I'une a partir de autre
avec X-ADD ou X-MULT.

THEOREME. Soit X = N? une relation définissable dans la structure
(N; 4+, x; =) etvérifiant la condition:

(*) pour tout x il existe une infinité d’entiers primaires v tels que (x, v) € X.
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Les trois structures (N;S; L, X-ADD), <(N;S§;L,X-MULT) et
{N; +, x; =) définissent alors les mémes relations et fonctions.

Preuve. Soit ¢ = {(x, v, p): (x, v) € X, v est primaire, p premier, p divise
x + v}. Le Corollaire 2.8 assure que I’égalité x = y équivaut a la condition

SUPP (x+1t) = SUPP (y+1t) pour une infinit¢ d’entiers ¢t .

L’hypothese faite sur X permet donc d’assurer que x = y équivaut a

{p:(x,v,p)ec}t = {p:(y,v,p)ec}.

Ceci donne une définition de la relation d’égalité dans la structure (N; L, o).

Comme o est incluse dans N x PP x P, le Théoréme 6.2 montre alors que

+ et x sont aussi définissables dans la structure <N; S, Pred; 1L, o).
Par ailleurs, I’égalité

o = {(x, v, p): il existe s tel que (x,v,s) e X-ADD et ge SUPP(s)}

montre que la relation o est définissable dans {(N; S; L, X-ADD). Comme
Pred est définissable a partir de S et X-ADD, ceci prouve que + et X
sont aussi définissables dans {N; S; L, X-ADD).

En ce qui concerne la structure {(N; S; L, X-MULT), on introduit la
relation

© = {(x, v, p): (x, v) € X, v est primaire, p premier, p divise xv + 1} .

On raisonne alors de fagon analogue en se servant du Corollaire 2 de 2.6
qui assure I’équivalence entre I’égalité x = y et la condition

SUPP (x) = SUPP (y) et, pour une infinité d’entiers ¢,
SUPP (tx+1) = SUPP(ty+1).

Remarque. Considérons le casou X = 1 = {(x, y): x et y sont premiers
entre eux}. On observe que I'ensemble {1} et la relation 1 se définissent
trés simplement dans la structure {(IN;|> (ou | est le prédicat de divisibilité)
par les formules

Ve (x|t) et Vz [[(z]x) A (z]ly)] = (z=1)].

Par ailleurs, la relation L-MULT se confond avec le graphe de la fonction
ppcm restreinte a cet ensemble L et se définit donc aussi dans la structure
(N;|>. On voit ainsi que le Théoréme précédent contient le résultat de
J. Robinson (cf. 4.5) selon lequel addition et multiplication sont (S; |)-
définissables.

i’i
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9.2. On obtient ci-dessous un renforcement important du Théoréme 9.1.

THEOREME. Il existe une fonction f, définissable dans la structure
(N;S; LY (resp. (N;Pred;Ll)>), de domaine N et a valeurs dans
Pensemble des entiers premiers, et pour laquelle la propriété suivante est vraie.

Si X = N? est déﬁnissable-dans la structure {N; +, x; =) et telle que
(**) pour tout x il existe un entier primaire v tel que v > f(x) et (x,v) € X

alors les trois structures <N;S; L, X-ADD)>, {(N;S; L, X-MULT) et
(N; 4+, x; =) définissent les mémes relations et fonctions.

Preuve. 1°) L’argument développé ci-dessous reprend la preuve du
Corollaire 1 du Théoréme de Stgrmer (cf. 2.6) en montrant que les notions
introduites sont définissables dans les langages (S; L) et (Pred; L).

Notons E et E' les ensembles

~/

E = {(x,9)eN x P:ilexiste y,vtels que u = yx et v
et uz#v et geSUPP(u—v))},
E = {(x,») e N*:SUPP [y(y+1)] < {q:(x,9) € E}} .

(0, 13X

D’aprés le Théoréme de Stgrmer (cf. 2.6), I'ensemble {y:(x, y)e E'} est fini
pour tout entier x. Soit N(x) le plus grand élément de {y:(x,y)e E'}.
On définit la fonction f comme suit:

f(x) = le plus petit entier premier supérieur & N(x) .

Les relations E, E' sont clairement saturées pour I’équivalence =,1- La
définition de la fonction f & partir de E’, et le fait qu'elle soit a valeurs
dans les premiers, montre que son graphe est aussi saturé pour = .

Le Théoreme 4.10 assure alors que f est définissable dans (N;S; L).

2°) La preuve du Corollaire 1 de 2.6 (appliquée avec I'ensemble fini
{u:u = 1,x} comme ensemble A) montre que les trois conditions suivantes
sont équivalentes:

) x =y,
i) x = 1y et SUPP(x+m) = SUPP (y+m) et SUPP (x+m+1)
= SUPP (y+m+1)} pour un m > f(x),

) x = 4y et SUPP (mx+1) = SUPP (my+1) pour un m > f(x).

Posons, de fagon semblable a ce qui a été fait plus haut,

o = {(x,v,p):(x,v) € X, v est primaire, p premier, p divise x + v},
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o' = {(x, v p): (x,v) € X, v est primaire, p premier, p divise x + v + 1},

n = {(x, v, p): (x, v) € X, v est primaire, p premier, p divise xv + 1} .

L’hypothese faite sur X permet de traduire les conditions ii) et iii) en
des définitions de la relation d’égalité dans les structures {N; L, o, o’)
et {N; L,n). Commme o, ¢ et m sont incluses dans N x PP x P,
le Théoréme 6.2 montre que + et x sont aussi définissables dans
(N; S, Pred; L,o,0)et{N; S, Pred; L, n). On achéve la preuve, commme
précédemment, en observant o et o’ sont définissables a partir de S et
X-ADD, et que = lest & partir de S et X-MULT.

3°) Pour obtenir une fonction f ayant la méme propriété et définissable
avec Pred et 1, on remplace =, ;, par =,_, (, dans la définition de E,
et le produit y(y+1) par y(y —1) dans la définition de E'.

On raisonne enfin a l'aide de la condition iii)bis suivante du Corollaire 1
de 2.6:

mbis x =,_; oy et SUPP(mx—1) = SUPP (my—1) pour un m > f(x).

9.3. Nous considérons maintenant des prédicats qui sont des affaiblissements
de la division euclidienne.

Avant de prouver le Théoréme 9.4 ci-dessous, dont le Théoréeme de Woods
cité en 4.6 est corollaire, nous mentionnons d’abord un fait simple.

PROPOSITION.  Pour tout entier premier m, la fonction z > Reste(z, m),
de domaine N est définissable dans les structures

(N;S;L> e (N;Pred; L).

Preuve. La relation y = Reste(x, ) est équivalente a chacune des
conditions:

[y=0 et w|x] ou [y=1 et w|S" !(x)] ou .. ou [y=n—1 et wS(x)],
et
[y=0 et m|x] ou [y=1 et x>1 et w|Pred(x)] ou ..
ou [y=n—1 et x=n—1 et w|/Pred” !(x)].

Comme 7 | z s’écrit —1(nlz) et que les singletons sont définissables dans les
langages (S, 1) et (Pred, L) (cf. 5.4 et 5.6), ces conditions se traduisent
dans ces langages.

9.4. Rappelons que Quot et Reste désignent les fonnctions quotient et
reste de la division euclidienne.
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Soit o > 2; on note Quot, et Reste, les graphes des fonctions partielles
(x, p) — Reste (Quot (x, p), ) et  (x, p) — Reste (Reste (x, p), o)
de domaine [N\{0}] x [P\{a}].

Remarque. 1°) Ces fonctions sont une vue modulo un entier fixé de la
restriction de la division au cas des diviseurs premiers; elles sont évidemment
définissables a partir des fonctions Quot et Reste.

2°) En contraste avec le théoréme ci-dessous, les graphes des fonctions
(x, y) — Reste (x + y, o) et (x, y) — Reste (xy, &), de domaine N\{0}] x N, sont
définissables dans les langages (S, L) et (Pred, ).

Ceci résulte de la Proposition 9.3, du calcul évident du reste de la somme
et d’'un produit, et de ce que les graphes de + et Xx restreintes a
{0, .., oo — 1}* sont définissables dans (S, L) et (Pred, L1).

THEOREME. Soit o > 3. Les structures

{N;S; L,Quot,>, <N;Pred; L, Quot,>, (N; Pred; 1, Reste,)
et {N;+,x;=)

définissent les mémes relations et fonctions.

Preuve. Les conditions ii), et iii), de la Proposition 2.14 montrent que
I'égalité x = y équivaut a chacune des conditions

(*) x et y ont méme parité et Reste(x, p) = Reste(y, p) pour tout
premier p # o,

(**) x et y ont méme parit¢ et Quotyx, p) = Quotyy, p) pour tout
premier p # o.

Comme P'egalité restreinte a I'ensemble fini fixé {0, ... « — 1} (dans lequel les
fonctions Quot, et Reste, prennent leurs valeurs) est définissable dans chacun
des langages (S, 1) et (Pred, L) (cf. Remarque 5.5), on voit que la condition (*)
(resp. (**)) se traduit dans les langages (S; L, Quot,) et (S; L, Reste,)
(resp. (Pred; L, Quot,) et (Pred; L, Reste,)).

Comme Quot, et Reste, sont inclus dans N x P x {0,.., & — 1}, on conclut
grace au Théoréme 6.2.

COROLLAIRE (Woods). Les structures {(N; <, L) et (N +, x; =)
définissent les mémes relations et fonctions.
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Preuve. Si p est premier et x # 0, le nombre pQuot(x, p) est le plus
grand entier divisible par p et inférieur ou égal a x. Ainsi, la fonction
(x, p) — pQuot(x, p), de domaine [N\{0}] x P est définissable dans la
structure {N; S, <, L). Par ailleurs, pour p # 3, Quot,(x, p) vaut

Reste (pQuot (x, p), 3) si 3 divise p — 1,
Reste [2 x Reste (pQuot (x, p), 3),3] si 3 divise p — 2.

La Proposition 9.3 montre alors que la fonction Quot, est définissable avec
<,Set L.

Comme < définit trivialement S et 1’égalité, le langage (S, Pred, <, 1)
se ramene au langage (<, 1).

Problemes. 1°) Le Théoréme 9.4 est-il vrai pour o« = 27?

2°) La restriction de 'ordre < a N x P suffit-elle, avec S et 1, a définir
+ et x 7 Une réponse positive est conséquence (par réduction immeédiate
au Corollaire ci-dessus) de la conjecture suivante d’Erdos: si x < y et
X =0, 1,y alors il existe un premier entre x et y.

§ 10. CoONCLUSION

10.1. Quelques perspectives

Une stratégie possible pour résoudre la conjecture d’Erdos-Woods pourrait
étre de définir la fonction exponentielle dans le langage avec S, L et la
fonction carré, puis de définir la fonction carré avec S et L.

Une autre voie pourrait consister a déterminer, pour chaque entier x
le support d’un entier x + v ¢€loigné de x.

On voit bien que la difficulté réside dans les liens cachés entre ’addition
et le produit (ici la coprimarité). Cest ce quavaient remarqué cer-
tains théoriciens des modeles (par exemple, A. Ehrenfeucht et D. Jensen
(cf. [EA & JD]) a propos de la reconstruction des modéles de I'arithmétique
par amalgamation de structures additives et multiplicatives. Ce n’est d’ailleurs
pas sans raison que ces derniers auteurs sont demandeurs de langages formés
 de deux ou trois prédicats (a I'exclusion de I'addition et la multiplication,
 bien évidemment) qui permettent de redeéfinir Parithmétique du premier ordre.
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10.2. Quelques remarques sur le caractére désespéré de certaines conjectures
de théorie des nombres.

On sait depuis les travaux de K. Godel (1931) que la vérité arithmétique
est au-dela du pouvoir démonstratif de toute théorie axiomatique:

L’ensemble des théorémes de toute théorie non contradictoire qui contient
Parithmétique — et dont les axiomes sont « effectivement donnés» — ne
recouvre pas lensemble des énoncés vrais de la structure (N; =, 4+, X ).

A Theure actuelle (plus précisément depuis les travaux de P. Cohen en
1963) ce résultat de Godel n’a trouvé sa pleine concrétisation qu’en théorie
des ensembles. Dans ce sujet, il y a maintenant pléthore de résultats logiques
(aussi optimaux que déconcertants) des types (*) et (**) décrits ci-dessous:

Rappelons que si T est une théorie logique dans laquelle on peut inter-
préter arithmétique (par exemple toutes les formalisations classiques de la
théorie des ensembles: Zermelo, Zermelo et Fraenkel, Godel et Bernays, ...),
il est possible de trouver un énoncé, que nous désignons par NC(T),
exprimant le caractére non contradictoire de la théorie T.

Certains des résultats d’indépendance trouvés en théorie des ensembles
sont du type suivant:

(*) Sila théorie des ensembles T n’est pas contradictoire, alors
— T ne prouve ni I'énoncé 4 ni 'énoncé —1 4 (négation de A);
— de plus, la théorie T + NC(T) prouve NC(T + A) et NC(T + —14).
Des exemples de tels énoncés A sont
— Tlhypothese du continu,

— lassertion de la mesurabilité Lebesgue de tout ensemble de réels qui
est PCA, c'est-a-dire projection du complémentaire de la projection d’un
borélien, etc.

Drautres resultats d’indépendance sont du type plus subtil suivant :
(**) — La théorie T + NC(T) prouve NC(T + 1 A),

— si la theorie T + NC(T) n’est pas contradictoire alors elle ne prouve
pas NC(T + A),

— ou bien T prouve 714, et, a fortiori, T prouve alors INC(T + A)),
ou bien T ne prouve ni A ni —1A4.

Des exemples de tels énoncés A sont

— le probléme d’Ulam sur T'existence d’un ensemble infini admettant un
ultrafiltre non principal stable par intersections dénombrables,



188 S. GRIGORIEFF ET D. RICHARD

— Dlassertion de la mesurabilité Lebesgue de tout ensemble de réels qui est
PCPCA, c’est-a-dire projection du complémentaire de la projection du complé-
mentaire de la projection (sic) d’'un borélien, etc.

10.3. Le pessimisme de spécialistes de théorie des nombres devant certaines
conjectures qu’ils jugent désespérées (comme I’est la conjecture d’Erdos-Woods
pour certains mathématiciens) pourrait étre 'expression de leur intuition de
résultats du type (*) ou (*¥).

Un argument logique montre que tout énoncé arithmétique de type
universel, tel que le probléme de Fermat VaVxVyVz[n<2 v x"+y"#z"], qui
n’est pas réfutable dans une théorie axiomatique T comme I'arithmétique du
premier ordre de Peano est, en fait, vrai dans la structure N. En effet,
A est alors vrai dans un modéle (standard ou non) de T et, comme N est
isomorphe a un segment initial de ce modele, ’énoncé A est également
vrai dans N.

Il serait bien surprenant que la vérit¢ d’un énoncé arithmétique soit
établie par de telles méthodes, aussi est-ce plutdt a des résultats du type (**)
(ou pire...) auxquels il faut s’attendre.
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