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156 S. GRIGORIEFF ET D. RICHARD

3°) Des résultats nouveaux de définissabilité de l'addition et de la
multiplication à partir de (S, + ; 1) ou de < 1) sur Z.

Il est à noter que S n'est pas définissable par addition et coprimarité
sur Z: en effet, xk(-x) est un automorphisme de Z qui respecte + et 1
mais pas S.

§ 5. La méthode de codage ZBV et le problème de J. Robinson

5.1. La méthode de codage ZBV

Les Théorèmes ZBV et LC (cf. 2.2 et 2.3) et leur Corollaire 2.4 permettent
des codages qui s'avèrent particulièrement performants dans l'étude du

pouvoir de définissabilité des langages (S ; _L) et (Pred ; _L).

La méthode de codage ZBV consiste à considérer comme codes d'un

entier x les supports ou bien les diviseurs primitifs des formes du type
px ± 1, où p est premier.

On ramène ainsi certaines guestions arithmétigues à la théorie des ensembles

finis de nombres premiers; en particulier, à des questions sur leur combinatoire.

Par ailleurs, chaque ensemble fini de nombres premiers (ou fonction de

domaine fini entre nombres premiers) est lui-même codable (de multiples façons)
par un seul nombre premier via la méthode indiquée en 2.1 combinant le

Théorème de Dirichlet et le Théorème des restes chinois. Un tel code joue
alors le rôle de mémoire dans laquelle est stocké l'ensemble fini de premiers

(ou la fonction) considéré(e).

5.2. Avant de passer à des. applications de la méthode ZBV, nous montrons
quelques résultats simples sur la mise en place dans la structure <N; _L>

d'éléments d'une théorie des ensembles finis par le biais des supports d'entiers :

l'ensemble de base est P, chaque partie finie X de P est codée par les

entiers ayant X pour support.
La relation d'inclusion entre parties finies de P se traduit sur leurs codes

par la relation SUPP (x) ^ SUPP (y).

Comme cette inclusion entre supports a lieu si et seulement si tout entier

premier avec y est premier avec x, on voit qu'elle se traduit dans la

structure <N;_L> par la formule Vz[(z±y)->(z_Lx)], notée SUPP(x)
Ç= SUPP (y).

A partir de cette relation, on peut définir la relation d'égalité entre

supports et les opérations ensemblistes d'union, intersection et différence des
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supports. On obtient ainsi l'algèbre ensembliste élémentaire sur les parties

finies de P.

5.3. On remarque ensuite qu'un entier x est primaire si et seulement si son

support est inclus dans celui de tout entier non premier avec lui.

On en déduit alors des formules qui définissent dans <N ; 1) l'ensemble PP

des primaires et la relation {(x, y) : x et y sont des puissances d'un même

premier}. Notées respectivement PP(x) et PP{x, y\ ce sont

Vy{[—i(j>-Lx)] - SUPP(x) E SUPP (y)} et PP(x) a PP(y) a ~i (xly)

On observe enfin que les ensembles {1} et {0} sont <N; _L)-définis par
les formules suivantes, notées respectivement Egal1(x) et Egal0(x):

VyCylx) et Vj/[(y±x) Egal^)]

On utilisera donc (cf. la Proposition 3.10) les constantes 0 et 1 dans le

cadre de tout langage contenant _L.

Remarque. L'exemple 1 de 3.8 permet de voir que les singletons {0}
et {1} sont les seuls à pouvoir être définis dans <N; _L>.

5.4. On peut définir très simplement le singleton {n}, n ^ 2, (et donc aussi

toute relation finie) dans la structure <N ; Pred ; _L par la formule
Egal1[Pred"~1(x)], notée Egal„(x).

On utilisera donc toutes les constantes entières dans le cadre du langage

<Pred;±>.

5.5. Nous montrons maintenant des applications simples — et
fondamentales — de la méthode ZBY.

Le Théorème 2.12 montre que pour des entiers primaires x et y, les trois
conditions x y, x {0, î, 2}^ * ={-2, -1,0iJ7 sont équivalentes.
On en déduit des définitions de l'égalité restreinte au domaine PP dans les

structures <N; S; _L> et <N; Pred; _L>, notées toutes deux x =PPy:

PP{x, y) a SUPP [S(x)] SUPP [%)] a SUPP [S2(x))] SUPP [S2(j;))]

PP(x, y) a SUPP [Pred(x)] SUPP [Pred(y)] a SUPP [Pred2(x))]

SUPP [Pred2(y))]

S A partir de ces formules, on obtient une définition dans <N;S;±>

Lde la restriction à PP de la fonction prédécesseur par la formule, notée
PredFP(x, y) :
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[Egalo(x)->Egal(MI a {[-i(Egal0(x)] [x PP%)]}

On obtient aussi une définition dans <N ; Pred ; _L> de la restriction
à PP de la fonction successeur par la formule, notée SPP(x, y) : ~i (Egal0(y)]
a [x PPPred(j;)]}.

Remarques. 1°) Soit n > 0. La formule

PP(x) v PP[S(x)] v v PP[SB(x)]

définit l'ensemble PP + [ — w, 0] dans <N; S; 1). L'application du Corollaire

2.12 montre — comme plus haut — que l'égalité et la fonction
prédécesseur restreintes à cet ensemble sont définissables avec S et _L.

2°) De façon analogue, avec Pred et _L, c'est l'ensemble PP + [0, n\ qui
est définissable, ainsi que l'égalité et la fonction successeur restreintes à

celui-ci.

5.6. On peut maintenant définir les singletons dans <N; S; _L>.

Soit n ^ 2 et soit p un premier plus grand que n. La condition x n

équivaut à

(p — n)-ième successeur de x (p — l)-ième successeur de 1

relation qui ne fait intervenir que la seule restriction de l'égalité à PP.

Ainsi, l'ensemble {n} est défini dans <N;S; _L> par la formule Sp~n(x)

PPSP~ 1(1), notée Egal„(x). On utilisera donc toutes les constantes entières

dans le cadre du langage (S ; ±).

5.7. Nous définissons maintenant (à la suite de [RDI]) Vensemble P des

nombres premiers dans chacun des langages (S ; _L) et (Pred ; _L).

Le point ii) du Corollaire 2.4 montre que l'ensemble X des primaires x
tels que SUPP(x—1) s SUPP(y— 1) pour tout primaire y de même base

que x est égal à

X P u {(2" — 1)2:u ^ 2 et l'entier 2" — 1 est premier}

Cet ensemble X se définit dans <N; S; _L> par la formule X(x) suivante:

PP(x) a Vj/VwVi*{[jPP(x, y) a Predpp(x, u) a Predpp(y, v)]

^ SUPP(u) <= SUPP (v)}

Comme (2M — l)2 + 1 2[2"(2"_1 —1) + 1], l'entier (2U— 1) + 1 est une

puissance de 2 mais pas (2U — l)2 + 1. On voit ainsi que P se définit à
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partir de X comme suit : P {xel: s'il existe y e X, y de même base que x

et y / x alors x + 1 est une puissance de 2}

On en déduit alors une définition, notée P(x), dans <N;5;_L> de

l'ensemble P :

X(x) a {[3z[X(z)a(z^ppx)aPP(x,z)]]^PP(S(x),2)]}

Grâce au prédicat SPP, ces définitions se transfèrent simplement de la

structure <N;S;±> à la structure <N;Pred;±> donnant les formules,

notées également X(x) et P(x):

PP(x) a Vy{PP(x, y) -> SUPP [Pred(x)] <= SUPP [Pred(w)]}

X(x) a {[3z[X(z)a(z^ppx)aPP(x, z)]] -> 3tlSPP(x, t)APP(t, 2)]}

5.8. La possibilité de définir P par l'adjonction à 1 de 5 ou bien Pred

permet de développer considérablement la théorie des parties finies de P

mise en place en 5.2 par le biais des supports d'entiers :

Toute la combinatoire ensembliste sur les supports s'exprime dans chacun des

langages (S; _L) et (Pred; _L).

La relation d'appartenance, traduite sur les codes par la relation

peSUPP(x), est définie dans chacune des structures (N;S;X} et

<N; Pred; 1) par la formule P(p) a —i(pJLx).

Nous montrons ci-dessous comment élargir le codage des parties finies
de P à un codage des relations et fonctions sur ces parties finies.

Pour k ^ 1 fixé, on note (Aa)1^a^K une énumération des suites de

k + 1 parties de {1, 2,..., k}. Soit n un entier premier plus grand que K.
Soient xx,..., xk des entiers.

A tout (pl5..., pfc)e SUPP(x1) x x SUPP(xfe) on associe — à l'aide du
Théorème de Dirichlet (cf. 2.1) — l'ensemble infini Xpif Pk

des entiers
premiers z > n qui vérifient les équations de congruences :

z i (mod pour les i tels que pt > k + 1, pt # k et pt # p. pour
tous les j < i,

z k +1 (mod q)si qe[SUPP^Ju-uSUPP^JlMl,1,
z a (mod n) si Aa est ({i : pt 2},{i:pt k + 1}, (i : k}).
On voit simplement que les XpiPk sont deux à deux disjoints.

Les Pred-codes d'une relation p sur SUPP^J x x SUPP(xJ sont
alors les entiers dont les supports coupent les seuls Xpt% Pk tels que
(Pi, Pk) eP- Les Pred-codes d'une fonction sont ceux de son graphe.
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Les S-codes d'une relation sont définis de façon similaire avec les

ensembles YPx tm„tPk obtenus en remplaçant dans la définition de XPlj^Pk
les restes de congruences par leurs opposés.

Proposition. Les relations

« (px,..., pk) appartient à la relation S-codée par x
sur SUPP(xx) x x SUPP(xfc)»,

« (p1,..., pk) appartient à la relation Pred-codée par x
sur SUPP^i) x x SUPP(xfc)»

sont respectivement définissables dans les structures <N ;S;JL> et

<N ; Pred ; _L>.

Preuve. La définition des Xpi,se traduit simplement en une définition
avec Pred et _L de la relation {(xx,..., xk, p1,..., pk, z) : z e Xpi D'où
l'assertion relative aux Pred-codes. Celle pour les S-codes se déduit de même.

Les notions ensemblistes usuelles se traduisent alors en propriétés sur les

S-codes ou Pred-codes définissables avec S et _L, ou Pred et J_.

En particulier, la notion d'injection entre supports d'entiers conduit à la
définissabilité de toute l'arithmétique sur les cardinalités des supports.

Notant | X | le nombre d'éléments de X, on retrouve ainsi un résultat de

Woods:

Corollaire (Woods). 1°) Les images réciproques par la surjection

x i—> | SUPP (x) | de N\{0} sur N des relations ^ et des graphes
de l'addition et de la multiplication sont définissables dans les structures

<N;S;1> et <N;Pred;_L>.

2°) La théorie Th(N ; S ; _L) (ensemble des énoncés s'écrivant avec le

successeur et la coprimarité pour seuls symboles de fonction et prédicat)
est indécidable.

Remarque. La partie 2°) de ce Corollaire signifie que la vérité arithmétique

des énoncés avec successeur et coprimarité est aussi compliquée que
celle de tous les énoncés de l'arithmétique. C'est une condition évidemment
nécessaire à une réponse positive à la conjecture d'Erdös-Woods d'après le

théorème cité en 4.7.

5.9. Une autre application simple du Théorème ZBY permet de définir

une fraction de la fonction exponentielle.
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La caractérisation donnée par le point iii) du Corollaire 2.4 de la notion
de diviseur primitif se traduit directement par des formules des langages

(S; 1) et (Pred; 1), notées toutes deux PRIMITIF(p, u).

Si p et q sont des nombres premiers distincts, l'entier qORD{q>p) est la seule

puissance u de q telles que p soit diviseur primitif de u — 1. Cette condition

s'exprime immédiatement, avec la formule PRIMITIF (p, u), d'où le résultat

suivant.

Proposition. On peut définir avec S et _L, ou bien Pred et 1,
la relation ternaire

{(p, q, u) : p et q sont premiers distincts et u — qORD{q<p)]

5.10. Les deux propositions qui suivent sont des résultats techniques utiles

en 5.11. Soient pa un primaire de base p et x un entier tels que:

— SUPP (x) ç= SUPP (pa -1),
— l'ensemble SUPP(x) contient exactement un diviseur primitif de tout
pß — 1 qui admet un diviseur primitif et vérifie l'inclusion SUPP(pß —1)

Ç SUPP(pa-l).
Le point ii) du Corollaire 2.5 montre que

— si pa n'est pas le carré d'un premier de Mersenne p 2" — 1 et si

p ^ 2 ou bien p 2 mais SUPP(26-1) {3, 7} SUPP(pa-l), alors le

cardinal de SUPP (x) est le nombre des diviseurs de oc,

— si p 2 et SUPP(26 — 1) « {3, 7} ç SUPP(pa-l), alors le cardinal de
SUPP (x) est le nombre des diviseurs de oc diminué de 1,

— si p est de la forme 2U - 1 et p* p2, alors | SUPP (x) | 1 tandis
que le nombre des diviseurs de a est 2.

Toutes les clauses précédentes sont exprimables avec S et 1, ou Pred
et _L A l'aide du Corollaire 5.8, ceci conduit à:

Proposition 1. On peut définir avec S et 1, ou bien Pred et 1,
la relation

{(u, x) : u est primaire et | SUPP (x) | est le nombre des diviseurs
de la valuation de u}

En particulier, on peut aussi exprimer dans ces langages la relation

{(u, v) : u et v sont primaires et leurs valuations ont le même nombre
des diviseurs}
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On peut alors montrer la Proposition suivante.

Proposition 2. On peut définir avec S et _L, ou bien Pred et _L,

la relation

{(p, q,) : p et q sont premiers et distincts et ORD (q, p) p — 1}

Preuve. Comme pour tout r l'entier ORD (r, p) est toujours un diviseur
de p — 1, on voit que l'égalité ORD (q, p) p — 1 équivaut à la condition

« pour tout premier r l'entier ORD (r, p) n'a pas plus de diviseurs que
ORD (q, p) ».

Cette dernière condition peut aussi s'écrire

« pour tout premier r la valuation de rORD(r'p) n'a pas plus de diviseurs

que celle de qORDp) ».

Sous cette forme, la traduction dans les langages avec S ou Pred
est une application immédiate de la Proposition 1 et de celle de 5.9.

5.11. La Proposition 2 précédente permet de définir maintenant une partie
importante de la fonction exponentielle. La preuve qui suit reprend et

simplifie celle de [RDI].

Proposition. On peut définir avec S et _L, ou bien Pred et J_,

la restriction de la fonction (p,q)^qp'1 à l'ensemble {(p,q,)'.p et q

sont premiers et distincts}.

Preuve. Compte tenu de la Proposition 2 de 5.10, il suffit de définir
qp~1 lorsque p et q sont des premiers distincts tels que ORD (g, p) < p — 1.

Soit w une puissance de q telle que SUPP(qORDiq>p) — 1) ç SUPP(w—1)
(c'est-à-dire de la forme qk x ORD(«'p)). On pose

{qa:SUPP(qORD(g>p)-l) Ç= SUPP(ga-l) c SUPP(w-l)},
D(XW) {r: r ^ p et r est diviseur primitif d'un qa — 1 où cfi g X)

E(XW) — {z: z est premier, ORD (z, p) p — 1 et z q (mod r)

pour tout r g D(Xw)}

Le théorème de Dirichlet (cf. 2.2) (et le fait que la condition ORD (z, p)

p — 1 soit impliquée par toute équation de congruence z g (mod p\
où g est un entier tel que ORD (g, p) p — 1) montre que l'ensemble

S(2fw) est infini.
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La définition de £(VW) montre que si z g E(2fw) alors ORD (z, p)

ORD (g, p) p - 1 et ORD (z, r) ORD (q, r). Ainsi, p est diviseur

primitif de zp~1 et tout diviseur primitif de qa — 1 qui est différent de p est

aussi primitif pour za — 1 (et donc non primitif pour les zß - 1 où a ^ ß).

En particulier,

— si oc ^ p — 1 alors qa — 1 n'a aucun diviseur primitif différent de p

et qui soit primitif pour zp~1 — 1 ;

— si ^_1el et s'il existe un diviseur primitif de qp'1 — \ alors

celui-ci est différent de q et tel que SUPP(w —1) SUPP (g — 1);

3°) il existe un primaire w de base q tel que SUPP (qORD{q'p) — 1)

ç SUPP (w — 1) et u admet un diviseur primitif différent de p en commun
avec zp~x — 1 pour tout z de £(2fw).

On conclut la preuve en observant que ces conditions sont simplement
exprimables dans les langages (S ; 1) et (Pred ; _L).

I Corollaire. La restriction de la fonction x 5X à l'ensemble P est

I définissable dans la structure <N; S; JL>.

Preuve. Le Corollaire 2.4 montre que 5n + 1 est le seul primaire 5a tel que
• SUPP (5a — 5) {5} u SUPP (5n — 1).

Cette condition permet donc de définir la fonction 5nL->5" + 1 de

domaine 5N dans la structure <N;S;±>. On conclut avec la Proposition
précédente, appliquée à q 5.

5.12. Proposition. La fonction x i—> 5* transforme la structure

<N ; + ; x

en une structure <5N; NA, NM; =PP) qui est entièrement définissable
dans la structure <N; S; _L>.

Eh particulier, les structures <N; S, x ^ 5X; J_> et <N;+, x;=>
définissent les mêmes relations et fonctions.

Preuve. On a déjà vu que la fonction 5"b^5" + 1 de domaine 5N,
notée NS (pour Nouveau Successeur) est (S, Indéfinissable.

Le même Corollaire 2.4 définit aussi directement la relation NDIV (pour
t

Nouvelle Divisibilité) formée des couples (5", 5m) tels que n divise m.
I Cette fonction et cette relation sont les images, par l'application x i—> 5*,
I de la fonction successeur et de la relation de divisibilité.
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Ainsi, on peut définir, au sein de la structure <N;S; JL>, une nouvelle
structure <5n;NS;NDIV> qui est isomorphe, via x i—> 5X, à la structure
<N;S;|>.

Le Théorème de J. Robinson (cf. 4.5) assure que l'addition et la
multiplication sont définissables dans <N;S;|>. Les formules qui définissent
l'addition et la multiplication usuelles sur les entiers à partir de S et |

permettent alors de définir dans la structure <5N; NS; NDIV), et donc
à fortiori dans <N; S; 1), les fonctions, notées NA et NM (pour nouvelles
addition et multiplication), qui sont les images des fonctions + et x par
l'isomorphisme x f—» 5*.

Remarques. 1°) Le choix de la base 5 (plutôt que 2 ou 3) permet
d'éviter les exceptions au Théorème ZBY et à son Corollaire 3.4, lesquelles

ne concernent en effet que les bases 2 et 2" — 1.

2°) J. P. Jones nous a signalé l'article [RR] dans lequel R. M. Robinson
utilise également les modèles internes sur les puissances d'un premier fixé.

Il démontre que ceux-ci sont (S ; Indéfinissables.

3°) La (S ; _L)-définissabilité de la fonction x i—> 5x, de domaine N, reste un
problème ouvert (car équivalent à la conjecture E-W).

5.13. On peut maintenant prouver une partie essentielle du Théorème
annoncé en 4.10.

Proposition. Soit p une relation définissable dans la structure

<N ; -h x La relation Sat (p) obtenue en saturant p par la relation

{0}, (où x={0}y signifie SUPP(x) SUPP (y)] est définissable dans

les structures <N,lS;JL> et <N;Pred;_L>.

Preuve. Soit F(x1,..., xk) une formule qui définit p dans <N; + ; x

L'isomorphisme Exp5 : x i-> 5* entre <N ; -b ; x > et <5N ; NA, NM ; PP>

transforme p en l'ensemble 5P {(5Xl,..., 5Xk): (xl5..., xk) g p}, et cette image
est la partie de 5Nk définie dans la structure <5n;NA,NM; =pp} par la
même formule F(xx,..., xk). Comme cette structure est définissable dans

<N;S; L) et <N;Pred; ±>, on voit que 5P est aussi définissable avec J_

et S ou Pred. Notons SUPP la fonction support, qui envoie N\{0} dans

l'ensemble ^f(P) des parties finies de P. L'isomorphisme Exp5 transforme

SUPP en la fonction NSUPP (nouveau support) qui envoie 5N^0} dans

l'ensemble ^/(5P) des parties finies de 5P de sorte que, notant EXP5 la

restriction à @*f(P) de l'extension de Exp5 aux parties, le diagramme (1)

soit commutatif :
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&AP) - ^/(5P)

Diagramme (1) supp î
EXP5

î NSUPP

N\{0} - 5N\{1}
Exps

On observe que

Sat(p) - SUPP-^SUPPtp)]

[EXP5oSUPP]_1[EXP5oSUPP] (p)

[EXP5°SUPP]_1[NSUPP°Exp5] (p)

- [EXP5oSUPP]-1 [NSUPP] (5p)

Chacune des fonctions intervenant dans cette dernière égalité est (S ; _L)

et (Pred ; _L) définissable :

— c'est évident pour la fonction SUPP,

— ceci résulte de la Proposition 5.12 pour EXP5 (extension aux parties
de la restriction aux premiers de Exp5),

— la fonction NSUPP, définissable dans <5N; NA, NM; PP> l'est

aussi avec (S ; JL) ou (Pred ; _L).

La définissabilité de Sat (p) avec (S ; _L) ou (Pred ; _L) résulte alors de celle

de 5P.

5.14. On peut enfin prouver le Théorème annoncé en 4.10.

Théorème. Soit A un ensemble d'entiers de Z. Soit p une relation
définissable dans la structure <N ; + x incluse dans Nk, et saturée

par la restriction à N de la relation d'équivalence A (où
signifie SUPP (|x + /|) SUPP fly+ i|) pour tout i e A, cf. 2.11).

i) Si A est fini alors p est définissable dans la structure <N ; S, PRED; _L>.

ii) Si A est fini et formé d'entiers tous positifs ou nuls, alors p est

définissable dans la structure <N; S; _L>.

iii) Si A est fini et formé d'entiers tous négatifs ou nuls, alors p est

définissable dans la structure <N; Pred; _!_>.

Preuve. 1°) Le cas A {0} est réglé par la Proposition 5.13. Le cas
où A est vide est trivial car p est alors égal à Nfe tout entier.

Si a e Z on désigne par Ta la translation x i-+ Sup (x + a, 0) de N dans N.
Si A on note TAl'applicationxi de N
dans N".
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Si B ç Z, (la trace de) l'équivalence =B sur N s'étend de façon évidente

sur N". Pour toute relation x sur N on note Sat^B(2Q la relation obtenue
en saturant x pour (la restriction à N de) l'équivalence B.
Nous considérons d'abord le cas où A {a1,..., an} ç N.

2°) Remarquons que si x et y sont dans N alors TA(x) =B TA(y) si et
seulement si x =A+B y, où A + B {a + b : a e A et b e B}. En particulier,
TA(x) {0} TA(y) si et seulement si x A y.

On observe enfin que, pour toute partie p de Nfc, on a

Sat3 Jp) yk):ilexiste (xx,e p tel que

pour 1 < i < k)

{Gi, —, : il existe (a-, xJ 6 p tel que TA{yt) ={0} f .,(a;)

pour 1 ^ i < k}

l(TA9TA)r1LS^{0}[(TA,..., Ta) (p)]]
(où (Ta, TA) (p) est incluse dans N"x/c).

3°) Si p est définissable dans la structure <N ; + x ; alors la relation

SatS{0}[(Ty4,..., TA) (p)] l'est aussi; étant ={0} saturée, elle est également
(d'après la Proposition 5.13) définissable dans la structure <N; S; J_>.

Par ailleurs, si a e N, l'application Ta n'est autre que l'itérée d'ordre a

de la fonction S. La fonction TA est donc une composée d'itérées de la
fonction S avec la fonction de brassage x i— (x,..., x) de N dans N".

D'après la Proposition 3.6, la famille des relations définissables dans

<N;S;...> est stable par image réciproque par TA (en termes logiques,
si F(x1,..., xj définit x dans <N; S;...) alors [_{TAi..., TJ]_1(x) y est défini

par la formule F[5fll(x),..., Sa"(x)]).

Remarque. Rappelons que l'application S n'est pas — à priori —
(S; _L)-définissable (cf. 3.5), il en est donc de même de TA.

Il en résulte que l'ensemble [CG,..., 7,j4)]_1[SatS{OJ[(ryl,(p)]],
c'est-à-dire Sat^(p), est définissable dans la structure (N;^; _L>. Si p est

saturée pour =A alors p Sat^^(p) et est donc (S ; _L)-définissable. Ceci

achève la preuve de l'assertion ii) du Théorème.

4°) Considérons maintenant le cas où A {aL,..., an} est formé d'éléments

tous négatifs ou nuls. Soit m le plus grand entier positif ou nul tel que
— m soit dans A. On note M le saturé de {0,..., m} pour A :

M » {x g N: il existe i g {0,..., m} tel que x =Ai}.
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Si a ^ 0 alors la fonction Ta est constante de valeur 0 sur {0,a]
et sa restriction à N\{0, —, a} est injective et d'image N\{0}. On voit

ainsi que si x > malors TAJ(x)] {x}.
De même, si x > m et y > m (en particulier si x et y sont dans

N\M) alors, comme plus haut, TA{x){0}
si et seulement si x A y.

On remarque que pour toute partie x de N'' on a

(N\M)PnSaUjx) Sats^[(N\M)pnx]

{Oh > yP)e(N \M:il existe (jxq (N\M)Pn x

tel que yt Axt pour 1 ^ ^
{Oh. •••> yP)e (N\M)P : il existe {x1,..., xp) e (N n x

tel que TA(yt) ={0} TA(xt) pour 1 ^ «S

Tjr^Sat^K ((N\M)pnx)]].

5°) Si x est définissable dans <N ; + x ; alors la relation

SatS{0)[(TA,..., Ta) ((N\M)pnx)]

(qui est incluse dans N"xfe) l'est aussi. Etant {0} saturée, elle est également

(d'après la Proposition 5.13) définissable dans la structure <N;Pred;_L>.
D'autre part, si a ^ 0, l'application Ta n'est autre que l'itérée d'ordre | a \

de la fonction Pred. Comme en 3°), on voit que la famille des relations
définissables dans <N;Pred;...> est stable par image réciproque par TA.

Ainsi,

UTÂ,TJ]'lÏS^JiTA3..., Ta) ((N\M)pnx)]]

c'est-à-dire (N\M)P n SaUjx), est définissable dans la structure <N ; Pred ; _L>.

Ceci prouve que

si x ç Np est saturée pour =A alors (N\Mfnx est (Pred;
Indéfinissable.

6°) Soit p une partie de Nfc.

Si I {zl5..., ij, où it < < it, est incluse dans {1,..., k}, on note
Proj7 la fonction (xx,xk) (xtl,..., xit) de Nk sur N.

Si x on note Extj(x) l'ensemble

Extf(x) {(xx,..., xk):ProjjKXi,..., xt)] ex et e M

pour tout i e {1,k}\I}
Comme M est saturée pour =A,onvoit que pour toute partie p de
N* on a
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(*) SaU» - U Ext^NWrnProj.CSaU»]] •

JT£{1, ...,k},p \I\

On note Ki a l'ensemble Ki>a {x > m: SUPP(x-fa) SUPP(\i + a\)}.
Il est clair que si — m ^ a ^ 0 l'ensemble Ki a est (Pred; »définissable.
Comme M [Mn{0, 1,m}] u [ (J f| on en déduit que M est

l^i^m aeA

(Pred; »définissable.
Il en résulte que si X est (Pred; Indéfinissable alors il en est de même

des Extj(X).

7°) On peut maintenant achever la preuve du point iii) du Théorème.

Si p est saturée pour =A alors les Projj[Sat»p)] le sont aussi. Le

point 5°) montre que les (N\M)P n Projj[Sat»p)] sont (Pred;
»définissables, il en résulte que les ExtJ[(N\M)pnProj/[Sat^^(p)]] le sont aussi,

et donc également p.

8°) Dans le cas général où A comprend des éléments positifs et d'autres

négatifs, on raisonne comme dans les points 4°) à 7°). Cependant, la fonction
TA est, dans ce cas, une composée d'itérées des deux fonctions S et Pred

avec la fonction de brassage x i—> (x,..., x) de N dans N". C'est donc alors
la famille des relations définissables dans <N; S, Pred;...) qui est stable par
image réciproque par TA. D'où la nécessité (à priori) d'introduire le langage
(S, Pred; 1).

§ 6. L'égalité et le problème de J. Robinson

6.1. Le résultat ci-dessous — à priori technique — s'avère être un outil
performant dans l'étude du rôle de l'égalité en face de S et _L.

Définition. Soit A une partie finie de Z. Une relation p, incluse dans

Nfc+1, est dite quasi-saturée pour =A si elle est saturée en toutes ses

variables sauf peut-être la première, c'est-à-dire que lorsque xt =Ayt pour
1 ^ » /c, alors les (k + l)-uplets (z, xx,..., xk) et (z, y1,..., yk) sont simultanément

dans p ou hors de p.

Exemple. D'après la Proposition 2.13, toutes les parties de N x PPk

(où PP est l'ensemble des primaires) sont quasi-saturées pour =A si A
contient {0, 1, 2} ou {— 2, — 1, 0}.

Lemme. Soit A une partie finie de Z. Soient pl5..., ppî0 des

relations définissables dans la structure <N ; -f, x ; — et chacune quasi-
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saturée pour A. On suppose que 0 est incluse dans N2 et que la

deuxième projection A de 0 (i.e. À {x0: il existe x tel que (x, xo)G0}y)

est une partie de N définissable dans <N; S, Pred; _L>.

Si x est une relation définissable dans <N; S, Pred; 1, Pi,-, Pp) et

incluse dans N", alors les relations

x' {(x0, xl5xn_.1): il existe x tel que (x, x0) e 0 et (x, xl5x^J e x}

x" {(x0, xx,xB_ i) : x0 g A et, pour tout x, si (x, x0) e 0

alors (x, Xi,x„_ f) g x}

sont également définissables dans la structure <N; S, Pred; 1, px,pp)
(c'est-à-dire sans faire intervenir la relation d).

Preuve. 1°) Le fait que A soit la deuxième projection de 0 et la quasi-

saturation de 0 pour =A montrent que A est J-saturé. Comme,
relativement à x' et x", la variable x0 varie dans A, on voit que x' et x"

sont ^)-saturées par rapport à x0.

2°) Si X est une partie de Z, posons Titj(X) {— j,..., 0} u \_X + {/—/}]•
Si u =Ti j(X) v alors (cf. la preuve de 4.11) on voit facilement que

— si x ^ j ou y ^ j alors TUj(X) contient — x ou — y et donc x y,

— x + (i-j) =xy + {i-jl
Il en résulte que S*[Pred7 (u)] =x S^Pred-7^)].

3°) Par récurrence sur la complexité de la formule F(x0, Xi,..., x„_ x) qui
définit x dans <N; S, Pred; X, p1? -, pp), on construit des formules F' et

F" qui définissent x' et x" dans cette même structure.

L'étape d'induction, c'est-à-dire l'introduction des connecteurs et
quantificateurs (qui, en termes ensemblistes (cf. 3.6), correspond aux opérations
booléennes et aux projections) est évidente: si D(x0) définit A avec S, Pred
et _L, alors

(3xiL)/ est 3xf(F), (F v G)' est F' v G', (—i F)' est ~~i(F") a D(x0) ;

(VxfF)" est VXi(F'% (F a G)" est F" a G", (~~iF)" est ~l(F') a D(x0)

L'étape initiale de la récurrence concerne les formules atomiques, c'est-à-dire
les relations x qui sont images réciproques des relations _L, R±,..., Rp par les

composées des fonctions S et Pred avec les fonctions de brassage. Les termes
du langage (S, Pred; _L, Rp) se ramènent (après simplification des
Pred o S) à ceux de la forme t(x) F[Predj(x)] où x est une variable.
D'où les différents cas considérés ci-dessous.
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4°) Cas où F est t(x0) _L w(x0)

Dans ce cas F et x" ne comportent qu'un seul argument et le point 1°)

montre qu'elles sont ^)-saturées et donc, d'après le Théorème 4.10,

définissables dans la structure <N; S, Pred; 1).
5°) Cas où F est t0(x0) _L t^xj
Si le terme C(xi) est ^[Pred-7^)] alors la {0})-saturation de 1 implique la

n .({^-saturation par rapport à x1 de la relation x et donc aussi de x!

et x". Compte tenu de 1°), les relations x! et x" sont r. i({0}M)-saturées, et

donc (Théorème 4.10) définissables dans <N; S, Pred; 1).
6°) Casoù F(x0, xx,x^) est -, où
1 ^ a < p— 1, a: {1,ka} ->{0,n1} et a(l) 0.

Si tirfjr(xa(r)) est S'-EPred^x^j,)], on pose ThJl{A) u u
De la A)-quasi-saturation de l'interprétation pa de Ra, on déduit la

5)-saturation de x par rapport aux variables x{- telles que i ^ cj(1) 0,

et donc aussi le même résultat relatif à x! et x". Le point 1°) assure alors

que x' et x" sont BUi4)-saturées et donc (Théorème 4.10) définissables dans

<N; S, Pred; 1>.

7°) Cas où F(x0,x1,..., xn_J est Pa(ClX(i)]>..., ^[xff(fca)]), où 1 ^ a

< p — 1, a: {1,..., ka} -+ {0,..., n — 1} et a(l) # 0.

Soit B défini comme au point 6°). On pose

X {(z, x0) : il existe x tel que z =B x et (x, x0) g 9}

Comme 0 est J-quasi-saturée, X est Bu J-saturée et donc (Théorème 4.10)

définissable dans <N; S, Pred; 1). La J-quasi-saturation de pa montre la

ß)-saturation de x par rapport aux variables xf telles que i ^ c(l), en

particulier celles telles que a(i) — 0 (car g(1) ^ 0). On a donc

x' {(x0, Xi,xn_ i) : il existe x tel que (x, x0) g 0 et (y1,..., ykJ g pa où

yt vaut ti [xCT(î)] si a(i) ^ 0 et vaut q[x] si o(i) 0},

{(x0, Xi,..., x„_ x) : il existe z tel que (z, x0) g X et (y1,..., yhJ g pa où

yt vaut ti [xCT(0] si o(i) ^ 0 et vaut q[z] si a(z') 0}.

x" {(x0, x1,..., x„_ x) : x0 g À et pour tout x, si (x, x0) g 0 alors

(y1,..., yk) g pa où vaut t;[xa(0] si a(i) ^ 0 et vaut

q [x] si çj(z) 0},
{(x0, xl5..., x„_i): x0 g. A et pour tout z, si (z, x0) g X alors

0>i> •••> yuj e pa où yt vaut tt [xCT(J si a(z) ^ 0 et vaut

^[z] si a(z) 0}
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Ces égalités donnent des définitions de x' et x" à partir de À, X et pa,

et donc (puisque A et X sont définissables avec S, Pred et 1) des

définitions de x! et x!' dans <N ; S, Pred ; 1, pa>.

6.2. Le résultat suivant est une extension du Théorème de Woods sur

l'équivalence du Problème de Robinson et de la (S ; _L)-définissabilité de

l'égalité.

Théorème. Soient pi,..., pp, cpi,..., <pq des relations et fonctions
définissables dans <N; + x ; =>. On suppose que p1? pp et les graphes

de (pl5..., cpg sont quasi-saturés pour A où A est une partie finie
de Z (c'est le cas, en particulier, si ces relations et graphes sont inclus

dans un produit N x [PPfc + P] où B est une partie finie de Z).
Si l'égalité est définissable dans <N; S, Pred, cpx,..., (pq; _L pi,..., pp)

(resp. <N; S, cpx,..., (pq;±,pl9..., pp>, resp. <N; Pred, cp±,..., (pq; 1, Pi,pp})
alors cette structure définit les mêmes relations et fonctions que <N ; + x ;

Preuve. Appliquons le Lemme 6.1 avec les relations pf et les graphes
des cpj, et, pour x la relation d'égalité, pour 0 le graphe de la fonction

x I-» 5X (graphe qui est bien quasi-saturé puisque son second argument est

toujours un primaire). On observe que x' est l'image de 0 par la fonction
de brassage (x, y) i-> (y, x). La <N; S, Pred; _L Pi,pp, Gr(cpx),... Gr((pq)}-
définissabilité de x', et donc de 0, permet de conclure à celle de + et x,
grâce à la Proposition 5.12.

On achève la preuve en observant que la définissabilité de l'égalité dans

la structure <N; S, Pred, cpx,..., <pq; JL p1,..., pp} montre l'équivalence de

cette structure et de <N; S, Pred; 1, pi5..., pp, Gr(cpx),... Gr(cpg)>.

On remarque enfin que si l'égalité est définissable avec les pf, cp-,

1 et S sans l'aide de Pred (resp. avec Pred sans l'aide de S) alors la
fonction Pred (resp. S) l'est aussi.

Remarque. Considérant pour p la relation d'égalité, on voit que la
condition de quasi-saturation des pa ne peut pas être levée dans le Lemma 6.1

ni dans le présent Théorème (sauf si la conjecture d'Erdös-Woods est vraie

6.3. Une application simple du Théorème 6.2 est la suivante:

Théorème. Soit J une injection de domaine N à valeurs dans les

primaires et définissable dans (N ; + x ;
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Les trois structures <N; S, J; ±>, <N; Pred, J; JL> et <N; + x ; =>
définissent les mêmes relations et fonctions.

Preuve. La relation d'égalité est définissable dans la structure <N ; S, J ; _L

par la formule J(x) PPJ(y) (cf. 5.5 pour la définition de =PP). On conclut
en appliquant le Théorème 6.2 avec pour p le graphe de J (qui est quasi-
saturé car à valeurs dans les primaires).

6.4. Une autre application simple du Théorème 6.2 est la suivante :

Soit EXP la relation binaire EXP {(x, y) : il existe a ^ 0 tel que y ax).

Théorème. Les trois structures <N ; S ; _L, EXP), <N ; S ; T, EXP) et

<N ; + x ; > définissent les mêmes relations et fonctions.

Preuve. On considère seulement le cas (S ; _L, EXP). Soit A l'ensemble

A EXP n[Nx PP] {(x, px) \ xe N et p e P}. On observe que l'égalité
x y équivaut à l'existence d'un z tel que (x, z) et (y, z) soient dans A.

L'égalité est donc définissable dans la structure <N ; S ; _L, A>.
Comme A est incluse dans N x PP, elle est quasi-saturée pour {0> 1>2},

et le Théorème 6.2 montre que + et x sont définissables dans la structure
<N ; S ; _L, A}. On conclut en remarquant que la relation A est elle-même
définissable dans la structure <N ; S ; 1, EXP) par la formule PP{y) a EXP(x, y).

6.5. Le Théorème ci-dessous est un fait curieux que l'on peut énoncer ainsi:

bien qu'il apparaisse difficile de la définir avec successeur et coprimarité,
la relation d'égalité n'a pourtant pas un pouvoir de définissabilité important,
sa contribution — en face de S et _L — se limite à se définir elle-même

ainsi que le graphe des itérés de S et elle n'est pas en mesure d'utiliser la

puissance des quantifications

Théorème. Toute formule du langage (S, Pred; _L) équivaut à une

combinaison booléenne de formules du langage (S, Pred ; _L) — formules sans

égalité — et de formules du type x Sl(y) (resp. x Predl(y))
—formules sans quantificateur —.

En termes ensemblistes, la classe des relations (JS ; S ,Pxed;
L}-définissables coïncide avec la classe des relations obtenues par combinaisons

booléennes

— des relations définissables dans la structure <(N; S, Pred; _L>,
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— des graphes des itérées de la fonction successeur (resp. prédécesseur)

et leurs images réciproques par les fonctions /PjCC) ß; (x1, xp) i— (xa, xß)

où 1 ^ a ^ p, 1 ^ ß ^ p, oc ^ ß.

Preuve. 1°) On commence par montrer que toute formule du langage

(S, Pred ;=,_!_) équivaut à une formule de ce même langage dont les sous-

formules atomiques sont particulièrement simples. C'est l'objet des points 2°)

à 4°).

2°) Si t1 et t2 sont des termes, les formules t.x 1 t2 et tx t2 sont
équivalentes à

3z13z2[(z1 - tx) a (z2 t2) a (z|J_z2)] et 3z13z2[(z1 tf a (z2 t2) a (z:l z2)]

Toute formule est donc équivalente à une autre dans laquelle les sous-
formules atomiques sont toutes de la forme t x ou x _L y où t est un
terme et x, y sont des variables.

3°) Comme Pred o S est l'identité, on peut se ramener au cas où tous les

termes sont de la forme S^Pred-^z)] où z est une variable.

4°) On a déjà vu (cf. 5.3) que tout singleton, et donc toute relation
finie ou cofinie, est définissable avec _L et S ou Pred.

Comme S1 [Pred7 (z)] vaut i si z ^ j et vaut z + i — j si z ^ j, la formule
S'PPred-^z)] x est équivalente à:

Ces formules sont de la forme [(Nx)aA(x)] v B(x, z) où A et B sont
écrites avec Pred et 1, et t est un terme du type Sk{z) ou Predk(z).

Notons enfin que la formule x x est toujours vraie et équivaut à

~i(xlx); si k ^ 0, la formule x Sk(x) est toujours fausse et équivaut à
(x_Lx) a n(xlx), la formule x Predfc(x) équivaut à x — 0.

On voit donc que

(*) Toute formule est équivalente à une formule dont les sous-formules
atomiques sont toutes de la forme x Sk(y) ou x Predfc(j;) ou encore
x _L z, où x, y sont des variables distinctes, z une variable et k ^ 0.

5°) Notons enfin que la formule x S\y) est équivalente à (y Predfc(x))
a (x^/c), laquelle est de la forme (y Pred*(x)) a A{x), où A est écrite avec
Pred et 1 (et sans égalité).

[(x Z)A(Z^7)] v [(X=I)aNJ)]
[(x Pred7 - 1(z)) a (z ^j)] v [(x-() a (z</)]
[(x ^-^(z))a(z^j)] V [(x= z) a (z </)]

SI l <j
si z > j

si z j
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De même, la formule x Predk(y) est équivalente à (;y Sk(x)) v [(x 0)

a (y^fc)], de la forme (y Predk(x)) a B(x, y) où B est écrite sans égalité.
Ainsi, on peut donc échanger les sous-formules x Predk(y) et y Sk(x%

modulo l'introduction d'autres sous-formules du langage (Pred, _L) ou (S, _L).

6°) Le point 5°) montre qu'il suffit, pour prouver le Théorème, de pouvoir
associer à toute formule F(x1,..., xp) du langage (S, Pred; _L) une formule
équivalente F'(xls xp) qui est combinaison booléenne de formules du

langage (S, Pred, A.) et de formules du type Sl(x) y ou Pred*(x) y,
où x, y sont des variables. Les points 2°) à 4°) montrent que l'on peut se

restreindre aux formules F(xl5..., xp) du langage (S, Pred; L) qui ont
la propriété (*).

La construction procède alors par récurrence sur la complexité de F.

7°) L'initialisation de la récurrence indiquée en 6°) est l'étude du cas des

formules atomiques. Puisque F vérifie (*), les seuls cas à étudier sont

x S\y), x Predk(y) et x L y ; il est évident qu'il suffit de prendre alors F'
égale à F.

8°) L'étape d'induction de cette récurrence concerne l'introduction des

connecteurs et du quantificateur existentiel.

Le passage aux connecteurs est évident: (~nF)' est ~i(F'), etc.

Le passage au quantificateur existentiel est l'objet des points ci-dessous.

9°) Soit F(x1,..., xp, xp + 1) une formule du langage (S, Pred, 1) pour
laquelle est déjà construite la formule équivalente F' de la forme indiquée
en 6°). On cherche à construire [3xp+1F{x1,..., xp, xp + 1)]'.

Utilisant 5°) pour les sous-formules Predk(x^) xj9 Sk(xp + 1) Xj et

Predk(xp+1) Xj de F', on voit que F', et donc aussi F, équivaut à une
combinaison booléenne de formules du langage (S, Pred, L) et de formules
des types Sk{xi) Xj,Sk(Xi) xp + 1 et Predfe(Xj) xp+1, où i ^ p et

j < P-

Rappelons que toute combinaison booléenne de formules se ramène à une

disjonction de conjonctions de ces formules et de leurs négations. D'autre

part, toute conjonction (t1 xp + 1) a R(t2, xp+1) équivaut à

(t1=xp +1) a R(UUi) •

Enfin, toute conjonction (ti^xp+1) a (t2^xp+1) équivaut à

[(U ^xp + 1) a (t1 t2J] v [(u ^xp+a (t2 ¥zxp+ -l) a (l •

Ceci montre que la formule F', et donc aussi F, équivaut à la disjonction
d'une famille de formules Ha(xl,..., xp) a Fa(x1,..., xp, xp+ x), a e A (A fini),
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où Ha est une conjonction de formules 5k(xf) Xp i ^ p,j < p, et de leurs

négations, et chacune des Fa est de l'une des deux formes suivantes :

Ga(x1,..., xp, xp+1) a [(sa xp+1)]

ou Gtx(x1,xp, xp+A [A (tU7^xp+1)] a [ A (C^C)]
ueUa ueUa,veUa,ufv

où Ga est une formule du langage (S, Pred, _L), sa et tu sont des termes

de Informe Sk(Xi) ou Predk(xf), avec i ^ p.

10°) Comme la quantification existentielle commute avec la disjonction, la

formule 3xp+1F équivaut à la disjonction des 3xp+1(Ha aFJ. La construction
de [3xp+1FJ peut ainsi être ramenée à celle des [3xp+1(Ha aFJ]' (dont ce

sera la disjonction).
Comme Hfxl,xp) ne dépend pas de xp+1, la formule 3xp+1(Ha a Fa)

équivaut à Hfx1,xp) a 3xp+1Fa. La construction de [3xp+1(Ha aFJJ
peut ainsi être ramenée à celle de [Bx^+iFJ' (dont ce sera la conjonction
avec Ha).

11°) Le cas où Fa est de la forme Ga(x2,xp, xp^. J a [(sa xp + 1)] est

trivial: la formule 3xp + 1Fa équivaut alors à Ga(x1;xp, sa), laquelle est de

la forme demandée en 6°) et peut être prise pour [3xp + 1FaJ.

12°) Etudions maintenant le cas où Fa est de la forme

Ga(xt, •••, xp,Xp+ J A [A (f„#xp + 1)] A [ A (t„^£„)]
usUa ueUa,veUa,u^v

D'après la Proposition 4.11 il existe une partie finie A de Z telle que la
relation définie par la formule Ga soit ^)-saturée. La relation =A est

évidemment définissable dans le langage (S, Pred, 1). Pour tout entier
k ^ 1, l'ensemble {x e N: la classe de x pour =A contient exactement
k éléments} est ^)-saturé. Le Théorème 4.10 assure donc qu'il est
définissable par une formule, notée EQk(x), du langage (S, Pred, 1). Si X est

un ensemble fini nous notons | X | le nombre de ses éléments. On considère
les formules 0, cpu> x et i|fu x suivantes, où u g Ua et X ç Ua :

^ (Xp+lj^ aF) > (Xp+1~ aKÏ] A [A (tv — Atuj] A [A {tw^= AtuJ] A EQ\x\(tu)
veU^ vsx w£X

et

(^p+1~ A^u)1 A C A A [A {twj^ Atuf\ A \ EQ\x\(tu)
veX w<£X

La disjonction de ces formules, quand varie dans Ua et dans les parties
de Ga, est une tautologie.
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La construction de [3xp+1FaJ peut ainsi être ramenée à celle des

[3xp+1(Fa a0)]', [3xp + 1(Fa A(pBj)]', [3xp+1(FaA\|/W5X)]' (dont ce sera la

disjonction).

13°) On observe que les clauses tu ^ xp+1 de Fa sont trivialement impliquées

par 0 et peuvent donc être supprimées dans la formule Fa a 0. Cette dernière

équivaut donc à Gfix1,..., xp9 xp+1) a La où La est la conjonction des

tu / tv (où ne figure pas xp+1). Ainsi, 3xp + 1(Fa a 0) équivaut à La a 3xp+1Ga.
Il est clair que cette dernière formule est de la forme demandée en 6°)

et peut être prise pour [ßxp+1(Fa a0)J.

14°) On observe que la formule Fa a çu X est toujours fausse car (puX

implique que la classe de tu pour A est l'ensemble des tv, v X, et donc

que xp + 1 est égal à l'un d'eux, ce qui contredit une des clauses de Fa.
On peut donc prendre pour [3xp+1(FaA(puX)J une formule comme x1 ^ xx.
15°) La relation définie par Ga étant ^j-saturée et \|iu X impliquant
Xp + 1 =Atu,lesformules Ga(xl fxp,xp+1)av|/„>xet a \|/b>x

sont équivalentes. Notons pu x la conjonction des clauses t, =Atu,tw
et ~nEQ\X\(tu) de y\tUfX (veX et w$X). Cette formule assure que la classe

de tu pour A contient un élément z différent des tv, v e X. Un tel élément z

est nécessairement également différent des tW9w $ X (lesquels ne sont pas
dans la classe de tu). Ainsi, ç>u X implique 3z[{z Atu) a A (C^z)].

veUa

Observons que Fa a \|/m x est équivalente à une formule de la forme

Xp) A [jXjrj-t-l A^uY! A ^ 5

veUa

où Ma, qui contient pu>x, est la conjonction d'une formule du langage
(S, Pred, 1) et des tu =£ tv (où ne figure pas xp + 1).

On voit donc que 3xp + 1(La a \|/u x) équivaut à Ma(xl s..., xp)9 laquelle peut
donc être prise pour [3xp + 1(FaA^fUfX)J.

Fin de la preuve du Théorème 6.5.

6.6. Une application du Théorème 6.5 permet d'obtenir l'implication
i) => iii)ter du Théorème 4.8 (et ce, de façon tout à fait constructive).

Corollaire. Si + et x sont définissables dans la structure

<N; S, Pred; _L> alors l'égalité l'est dans <N; 5, Pred; J_>.

Preuve. Le Théorème 6.5 montre que si la relation d'ordre x < y est

définissable avec S, Pred, et 1, elle l'est par une formule qui, mise

sous forme de disjonction de conjonctions, a la forme suivante
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V [F2(.x. y) A [A(.VT-V-i i )] A [A(x#y+j)] a [A(y x + /c)]
26.4 iel-j jeJa /ceKa

A [ A(.X=aj+l)]]
IsLa

où est une formule ne faisant pas intervenir l'égalité.
Si iv2 ou contient plus d'un élément alors la clause associée à oc

est impossible et peut donc être supprimée. Si La n'est pas vide ou si

K2 contient 0 alors la clause associée à cc contredit la condition x < y
et peut donc être supprimée. Si Ka {/t}, k ^ 1, alors la sous-formule

}• x + k implique x < y; ainsi, la clause associée à a peut, toute entière,
être remplacée par y — x + k.

Ceci permet de définir x < y sous la forme suivante :

[ V y x + /c] v V[f3(x, y) a [A a [ A
ksK aeA iela

Soit M le supremum des éléments des Ja.

Puisque la clause associée à a implique x < y, on voit que Ea(x, y) implique
(x<y) v [ V (y .x + i)]v [ V (x y+_/)]], qui implique aussi x < y + M.

i-I-1 jAJ-j

Si F{x. }•) est la disjonction des F^(x, y), on voit donc que

x < y F(x, y) => x ^ y + M

d'où x y => F(x. y +1) a F{y, x-h 1) ^ | x — y | ^ M + 1.

Le point iii) du Théorème 2.11 permet alors de conclure que l'égalité x y
est définie par la formule F(x, y +1) a F{y, x+1) a £(x, y) où E(x, y) est la
formule, écrite avec S et 1 qui définit la relation x ={0 Jcl y, où k est

un premier supérieur à M.

§ 7. Déeinissabilité par successeur, coprimarité
ET RÉSIDUATION QUADRATIQUE

7.1. Désignons par RES et T les relations binaires

RES {(x. p) g N x P: x est résidu quadratique modulo le premier p)
T {(T P) e N x P : x est impair et l'exposant (peut-être nul) du

premier p dans la décomposition primaire de x est
pair}

Le Théorème de Stornier (cf. Corollaire 2.5, point ii) se traduit par le
lemme suivant :
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Lemme. L'égalité des entiers impairs x et y équivaut à la condition
suivante (où s vaut, au choix, 1 ou bien — 1) :

SUPP(x) SUPP (y) et SUPP (x -h 2s) - SUPP (y-f 2s) et, pour
tout p premier et tout i e {0, 2}, les couples (x + 8i, p) et (y + si, p)

sont simultanément dans T ou hors de T.

7.2. Théorème. Les structures <N;S;_L,T>, <N; Pred; _L, T) et

(N ; + x ; définissent les mêmes relations et fonctions.

Preuve. Le Lemme 7.1 fournit des définitions dans les langages

(Pred;_L,T> et (S; 1,T) de la relation d'égalité restreinte aux entiers

impairs. On en déduit simplement des définitions dans ces langages de la
relation d'égalité tout entière. On conclut enfin en appliquant le Théorème 6.2

puisque, la seconde variable de T variant dans P, la relation T est quasi-saturé
(cf. Exemple 6.1).

7.3. Nous allons maintenant définir la relation T dans le langage (S ; JL, RES).

Proposition. La relation T est définissable dans les structures

<N; S; 1, RES) et <N; Pred; 1, RES).

Preuve. Soient x un entier impair différent de 1 et p un diviseur

premier de x. Le Lemme 2.13 montre que l'exposant de p dans x est pair
si et seulement s'il existe un entier premier q ne divisant pas x et tel que
les conditions suivantes soient simultanément satisfaites :

pour tout p' e SUPP (x)\{p)

Comme l'égalité sur les premiers s'exprime dans les langages (Pred; 1)
et (S; _L) (cf. 5.5) cette caractérisation s'écrit dans (Pred; 1, T, RES) et

dans (S; 1, T, RES).

Corollaire. Les structures <N ; S ; _L, RES), <N ; Pred ; 1, RES) et

(N ; + x ; — > définissent les mêmes relations et fonctions.

7.4. L'analyse de la preuve précédente et de celle du Lemme 2.3 suggère

qu'on peut remplacer RES par diverses restrictions. Nous utiliserons au § 8

la restriction suivante de la relation RES :
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RRES RESnN x [8N + 5]

{(x, p) e N x P: p 5 (mod 8) et x est résidu quadratique
modulo p}

L'intérêt de restreindre RES à 8N -f 5 tient à ce que q — 1 est de la forme

4(2/c+1) lorsque q est lui-même de la forme 8/c + 5.

Le Corollaire 7.3 précédent s'adapte simplement :

Théorème. Les structures <N ; S ; 1, RRES), <N ; Pred ; _L, RRES) et

<N ; + x ; > définissent les mêmes relations et fonctions.

Preuve. En changeant, dans la preuve du Lemme 2.13, l'équation
z 1 (mod 4) en z 5 (mod 8), on peut supposer que l'entier premier q

obtenu dans ce lemme satisfait l'équation q 5 (mod 8).

Ceci permet alors de remplacer RES par RRES dans la traduction utilisée

dans la preuve de la Proposition 7.3.

§ 8. Définissabilité par successeur, coprimarité
ET LA RELATION BINAIRE « y EST UNE PUISSANCE DE X »

8.1. Nous considérons maintenant la relation binaire

PUIS {(x, y) : il existe n ^ 1 tel que y x"}

Remarquons que la relation d'égalité se définit facilement dans le langage
réduit au seul prédicat PUIS par la formule PUIS (x, y) a PUIS (y, x).

Les fonctions S et Pred sont donc définissables l'une à partir de l'autre
avec PUIS.

Théorème. Les deux structures <N; S; 2_, PUIS) et <N; + x ; =>
définissent les mêmes relations et fonctions.

Remarque. Bien sûr, le Théorème 6.2 n'est pas directement applicable
car PUIS n'est pas — a priori — quasi-saturé pour un =A.

Ce Théorème est un corollaire immédiat du Théorème 7.4 et de la
Proposition suivante, dont la preuve est l'objet des alinéas 8.2 à 8.5
ci-dessous.
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Proposition. La relation RRES est définissable dans <N ; S ; J_, PUIS).

8.2. Le Corollaire 2.4 (point ii) du Théorème ZBY montre que l'égalité

y x2 équivaut à la condition

(*) x y 0 ou x y 1 ou bien y est une puissance de x et

.y ^ x et SUPP (y — 1) SUPP (x2 — 1).

Comme SUPP (x2 — 1) SUPP (x +1) u SUPP (x — 1), on peut exprimer
dans le langage (S, Pred; _L) la relation SUPP (y— 1) SUPP(x2 —1).

Comme Pred est exprimable avec S et PUIS, on voit que (*) donne une
définition de la fonction x i—> x2 dans le langage (S ; _L, PUIS).

8.3. Si p est premier et ne divise pas x, nous notons ORD (x, p) l'ordre de x
modulo p.

Rappelons que xa xORD(*'p) si et seulement si p est diviseur
primitif de xa — 1. La caractérisation donnée par le point iii) du Corollaire

2.4 de la notion de diviseur primitif donne alors une définition de la
fonction (x, p) i— xORD(x'p) sur le domaine {(x, p) : x ^ 2, p est premier et

ne divise pas x} dans le langage (Pred ; _L, PUIS) et donc aussi dans

(S ; 1, PUIS).

8.4. Soient A et B les relations suivantes :

A {(x, p): p est premier et divise x, ou x ^ 1}

B {(x, p) : x ^ 2, p est premier et ne divise pas x, et p 5 (mod 8)}

On observe que l'on a l'égalité

RRES [An[N x (Pn8N + 5)]] u \BnRES]

La relation A est évidemment (,S ; _L)-définissable, l'ensemble P n 8N + 5,

inclus dans P, l'est aussi (Théorème 4.8 ou 4.9). Ainsi, le premier terme de

cette union est (S ; Indéfinissable.
Le même argument montre que la relation B est (S ; _L)-définissable.

8.5. Nous montrons que B n RES est (5; _L, PUIS)-définissable.
Soit (x, p) dans B, le critère d'Euler sur les résidus quadratiques montre que

(1) (x, p) g RES si et seulement si xip~1)/2 1 (mod p)

si et seulement si ORD (x, p) divise (p—1)/2



CODAGE ZBV 181

Puisque p 5 (mod 8), l'entier p — 1 est de la forme p — 1 4(2/c+l).

Puisque ORD (x, p) divise toujours p — 1, l'équivalence (1) devient alors

(2) (x, p) g RES si et seulement si 4 ne divise pas ORD (x, p).

Le point ii) du Corollaire 2.4 du Théorème ZBV montre que (2) peut aussi

s'écrire

(3) (x, p) g RES si et seulement si SUPP (x4— 1) £ SUPP [xORD(x,p)— 1].

Ceci prouve l'égalité

(4) C n RES {(x, p) g C: SUPP (x4 -1) £ SUPP [xORD(*'p)-1]}.
Les résultats de 8.2 et 8.3 permettent alors de traduire cette égalité en une

définition de la relation C n RES dans le langage (S; 1, PUIS).
Ceci achève la preuve de la Proposition 8.1 et donc du Théorème 8.1.

8.6. Problème ouvert. Peut-on remplacer dans le Théorème 8.1 le prédicat
PUIS par la relation y x2l

§ 9. Définissabilité par successeur, coprimarité
ET RESTRICTIONS DE L'ADDITION, DE LA MULTIPLICATION OU DE LA DIVISION

9.1. Nous allons maintenant donner les prédicats les plus faibles que nous
connaissions qui, joints au successeur et à la coprimarité, permettent de
définir toute l'arithmétique.

Si X ç= N2, on note A-ADD et A-MULT les graphes des restrictions de

l'addition et de la multiplication à A :

A-ADD {(x, y, z) : (x, y) e X et z x + y}

A-MULT {(x, y, z) : (x, y) e X et z xy}

Dans toute la suite, la première projection de X sera toujours égale à N
tout entier. La relation d'égalité se définit alors facilement dans le langage
réduit au seul prédicat A-ADD (resp. A-MULT): x - xr si et seulement si

{(p, y) : (x, p, y) e X-ADD} {(p, y) : (x', p, y) e X-ADD}
Les fonctions S et Pred sont donc définissables l'une à partir de l'autre
avec A-ADD ou X-MULT.

Théorème. Soit XSN2 une relation définissable dans la structure
<N ; + x ; et vérifiant la condition :

(*) pour tout x il existe une infinité d'entiers primaires v tels que (x, v) e X.
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Les trois structures <N ; S ; 1, X-ADD>, <N ; S ; _L, X-MULT) et

<N ; + x ; définissent alors les mêmes relations et fonctions.

Preuve. Soit a {(x, v, p) : (x, v) g X, v est primaire, p premier, p divise

x + v}. Le Corollaire 2.8 assure que l'égalité x y équivaut à la condition

SUPP (x +1) SUPP (y +1) pour une infinité d'entiers t.

L'hypothèse faite sur X permet donc d'assurer que x y équivaut à

{p: (x, v, p)ea}v, p) e a}

Ceci donne une définition de la relation d'égalité dans la structure <N ; 1, a).
Comme a est incluse dans N x PP x P, le Théorème 6.2 montre alors que
+ et x sont aussi définissables dans la structure <N; S, Pred; _L, a).

Par ailleurs, l'égalité

a {(x, v, p) : il existe s tel que (x, v, s) g X-ADD et q g SUPP (s)}

montre que la relation a est définissable dans (N; S; _L, X-ADD). Comme
Pred est définissable à partir de S et X-ADD, ceci prouve que + et x
sont aussi définissables dans <N ; S ; _L, X-ADD).

En ce qui concerne la structure <N;S; JL,X-MULT>, on introduit la

relation

7i {(x, F, p) : (x, v) g X, v est primaire, p premier, p divise xv + 1}

On raisonne alors de façon analogue en se servant du Corollaire 2 de 2.6

qui assure l'équivalence entre l'égalité x y et la condition

SUPP (x) SUPP (y) et, pour une infinité d'entiers t,

SUPP (£x+ 1) SUPP (ty+ 1).

Remarque. Considérons le cas où X _L {(x, y) : x et y sont premiers

entre eux}. On observe que l'ensemble {1} et la relation 1 se définissent

très simplement dans la structure <N ; | > (où | est le prédicat de divisibilité)

par les formules

V£ (x|£) et Vz [[(z|x) a (z|y)] -> (z= 1)]

Par ailleurs, la relation _L-MULT se confond avec le graphe de la fonction

ppcm restreinte à cet ensemble _L et se définit donc aussi dans la structure

<N;|>. On voit ainsi que le Théorème précédent contient le résultat de

J. Robinson (cf. 4.5) selon lequel addition et multiplication sont (S;
Indéfinissables.
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9.2. On obtient ci-dessous un renforcement important du Théorème 9.1.

Théorème. Il existe une fonction f, définissable dans la structure

<N;S;±> (resp. <N; Pred; 1 de domaine N et à valeurs dans

l'ensemble des entiers premiers, et pour laquelle la propriété suivante est vraie.

Si X £ N2 est définissable dans la structure <N ; + x ; et telle que

(**) pour tout x il existe un entier primaire v tel que v ^ f(x) et (x, v) e X

alors les trois structures <N ; S ; _L X-ADD), <N ; S ; _L, A-MULT) et

<N; + x ; > définissent les mêmes relations et fonctions.

Preuve. 1°) L'argument développé ci-dessous reprend la preuve du

Corollaire 1 du Théorème de Stürmer (cf. 2.6) en montrant que les notions
introduites sont définissables dans les langages (S ; _L) et (Pred ; _L).

Notons E et E' les ensembles

E {(x, q) e N x P : il existe u, v tels que u ={0> 1}x et v ={0> 1}x

et u # v et q g SUPP (\u —1>|)}

E' {(x, y)e N2 : SUPP [y(y + 1)] ç= {q : (x, q) e E}}

D'après le Théorème de Stürmer (cf. 2.6), l'ensemble {y : (x, y) e E'} est fini
pour tout entier x. Soit N(x) le plus grand élément de {y : (x, y) e E'}.
On définit la fonction / comme suit :

/(x) le plus petit entier premier supérieur à N(x).

Les relations E, E' sont clairement saturées pour l'équivalence ={0,1}. La
définition de la fonction / à partir de E', et le fait qu'elle soit à valeurs
dans les premiers, montre que son graphe est aussi saturé pour ={0, i}-
Le Théorème 4.10 assure alors que / est définissable dans <N;S;_L>.
2°) La preuve du Corollaire 1 de 2.6 (appliquée avec l'ensemble fini
{u: u ={0 1}x} comme ensemble A) montre que les trois conditions suivantes
sont équivalentes :

i) x y

Ü) * {o, i}3> et SUPP (x -f m) - SUPP (y + m) et SUPP (x + m +1)
SUPP (j; + ra+ 1)} pour un m ^ /(x),

iii) x ={0 1}j/ et SUPP (rax + 1) SUPP (my + 1) pour un m ^ /(x).
Posons, de façon semblable à ce qui a été fait plus haut,

a ~ {(x, v, p) : (x, v)eX,v est primaire, p premier, p divise x + v}



184 S. GRIGORIEFF ET D. RICHARD

& {(x, v, p): (x, v)eX,v est primaire, p premier, p divise x + v + 1},
n {(x, v, p) : (x, v) e X, v est primaire, p premier, p divise xv + !}•

L'hypothèse faite sur X permet de traduire les conditions ii) et iii) en
des définitions de la relation d'égalité dans les structures <N; _L, er, cr')
et <N;_L,7i). Commme a, a' et n sont incluses dans N x PP x P,
le Théorème 6.2 montre que + et x sont aussi définissables dans

<N; S, Pred; _L, a, a') et <N; S, Pred; _L, n). On achève la preuve, commme
précédemment, en observant a et a' sont définissables à partir de S et

X-ADD, et que n l'est à partir de S et X-MULT.

3°) Pour obtenir une fonction / ayant la même propriété et définissable

avec Pred et 1, on remplace ={0> 1} par {_i,0} dans la définition de E,

et le produit y(y +1) par y(y — 1) dans la définition de E'.

On raisonne enfin à l'aide de la condition iii)bis suivante du Corollaire 1

de 2.6:

iii)bis x ={-1,0}^ et SUPP(mx —1) SUPP(my—1) pour un m ^ /(x).

9.3. Nous considérons maintenant des prédicats qui sont des affaiblissements
de la division euclidienne.

Avant de prouver le Théorème 9.4 ci-dessous, dont le Théorème de Woods
cité en 4.6 est corollaire, nous mentionnons d'abord un fait simple.

Proposition. Pour tout entier premier n, la fonction z i— Reste (z, n%

de domaine N est définissable dans les structures

<N; S; _L> et <N;Pred;l>.
Preuve. La relation y Reste (x, tu) est équivalente à chacune des

conditions :

[y 0 et 7t|x] ou [y 1 et 7i|S,7r_1(x)] ou ou [_y n— 1 et rc|S(x)]

et

[y 0 et 7i|x] ou [y= 1 et x^l et 7i|Pred(x)] ou
ou [y 7i — l et x ^ 71 — 1 et 7i|Pred7r_1(x)]

Comme n | z s'écrit —i (7c _Lz) et que les singletons sont définissables dans les

langages (S, J_) et (Pred, _L) (cf. 5.4 et 5.6), ces conditions se traduisent
dans ces langages.

9.4. Rappelons que Quot et Reste désignent les fonnctions quotient et

reste de la division euclidienne.
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Soit a ^ 2; on note Quot« et Restea les graphes des fonctions partielles

(x, p) i—> Reste (Quot (x, p), a) et (x, p) \-> Reste (Reste (x, p), a)

de domaine [N\{0}] x [P\{a}].

Remarque. 1°) Ces fonctions sont une vue modulo un entier fixé de la

restriction de la division au cas des diviseurs premiers ; elles sont évidemment

définissables à partir des fonctions Quot et Reste.

2°) En contraste avec le théorème ci-dessous, les graphes des fonctions

(x, y) i— Reste (x + y, a) et (x, y) i— Reste (xy, a), de domaine N\{0}] x N, sont
définissables dans les langages (.S, _L) et (Pred, _L).

Ceci résulte de la Proposition 9.3, du calcul évident du reste de la somme
et d'un produit, et de ce que les graphes de + et x restreintes à

{0,..., a — l}2 sont définissables dans (S, _L) et (Pred, ±).

Théorème. Soit a ^ 3. Les structures

<N ; S ; 1, Quota> <N ; Pred ; J_, Quota> <N ; Pred ; 1, Restea>

et <N ; + x ; >

définissent les mêmes relations et fonctions.

Preuve. Les conditions ii)a et iii)a de la Proposition 2.14 montrent que
l'égalité x y équivaut à chacune des conditions

(*) x et y ont même parité et Reste«(x, p) Reste«(y, p) pour tout
premier p / a;.

(**) x et y ont même parité et Quota(x, p) Quota(y, p) pour tout
premier p / a.

Comme l'égalité restreinte à l'ensemble fini fixé (0,... a — 1} (dans lequel les
fonctions Quota et Reste« prennent leurs valeurs) est définissable dans chacun
des langages (5, 1) et (Pred, 1) (cf. Remarque 5.5), on voit que la condition (*)
(resp. (**)) se traduit dans les langages (S; ±, Quot«) et (S ; _L, Reste«)
(resp. (Pred ; 1, Quot«) et (Pred ; 1, Reste«)).

Comme Quot« et Reste« sont inclus dans N x P x {0,..., oc - 1}, on conclut
grâce au Théorème 6.2.

Corollaire (Woods). Les structures <N; < _L> et <(N; + x ;

définissent les mêmes relations et fonctions.
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Preuve. Si p est premier et x ^ 0, le nombre pQuot (x, p) est le plus
grand entier divisible par p et inférieur ou égal à x. Ainsi, la fonction
(x, p) h-» pQuot (x, p), de domaine [N\{0}] x P est définissable dans la
structure <N; S, < _L>. Par ailleurs, pour p ^ 3, Quot3(x, p) vaut

Reste (pQuot (x, p), 3) si 3 divise p — 1,

Reste [2 x Reste (pQuot (x, p), 3), 3] si 3 divise p — 2

La Proposition 9.3 montre alors que la fonction Quot3 est définissable avec

< S et JL.

Comme < définit trivialement S et l'égalité, le langage (S,Pred, < JL)

se ramène au langage < _L).

Problèmes. 1°) Le Théorème 9.4 est-il vrai pour a 2?

2°) La restriction de l'ordre < à N x P suffit-elle, avec S et X, à définir

+ et x Une réponse positive est conséquence (par réduction immédiate

au Corollaire ci-dessus) de la conjecture suivante d'Erdös: si x < y et

x ={0,1}y alors il existe un premier entre x et y.

§ 10. Conclusion

10.1. Quelques perspectives

Une stratégie possible pour résoudre la conjecture d'Erdös-Woods pourrait
être de définir la fonction exponentielle dans le langage avec S, _L et la

fonction carré, puis de définir la fonction carré avec S et _L.

Une autre voie pourrait consister à déterminer, pour chaque entier x
le support d'un entier x + v éloigné de x.

On voit bien que la difficulté réside dans les liens cachés entre l'addition
et le produit (ici la coprimarité). C'est ce qu'avaient remarqué
certains théoriciens des modèles (par exemple, A. Ehrenfeucht et D. Jensen

(cf. [EA & JD]) à propos de la reconstruction des modèles de l'arithmétique

par amalgamation de structures additives et multiplicatives. Ce n'est d'ailleurs

pas sans raison que ces derniers auteurs sont demandeurs de langages formés

de deux ou trois prédicats (à l'exclusion de l'addition et la multiplication,
bien évidemment) qui permettent de redéfinir l'arithmétique du premier ordre.
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10.2. Quelques remarques sur le caractère désespéré de certaines conjectures

de théorie des nombres.

On sait depuis les travaux de K. Gödel (1931) que la vérité arithmétique
est au-delà du pouvoir démonstratif de toute théorie axiomatique :

L'ensemble des théorèmes de toute théorie non contradictoire qui contient

l'arithmétique — et dont les axiomes sont « effectivement donnés » — ne

recouvre pas l'ensemble des énoncés vrais de la structure <N ; + x

A l'heure actuelle (plus précisément depuis les travaux de P. Cohen en

1963) ce résultat de Gödel n'a trouvé sa pleine concrétisation qu'en théorie
des ensembles. Dans ce sujet, il y a maintenant pléthore de résultats logiques
(aussi optimaux que déconcertants) des types (*) et (**) décrits ci-dessous:

Rappelons que si T est une théorie logique dans laquelle on peut
interpréter l'arithmétique (par exemple toutes les formalisations classiques de la
théorie des ensembles: Zermelo, Zermelo et Fraenkel, Gödel et Bernays,
il est possible de trouver un énoncé, que nous désignons par NC(T),
exprimant le caractère non contradictoire de la théorie T.

Certains des résultats d'indépendance trouvés en théorie des ensembles

sont du type suivant :

(*) Si la théorie des ensembles T n'est pas contradictoire, alors

— T ne prouve ni l'énoncé A ni l'énoncé n A (négation de A) ;

— de plus, la théorie T + NC(T) prouve NC(T + A) et NC(T+~iA).
Des exemples de tels énoncés A sont

— l'hypothèse du continu,

— l'assertion de la mesurabilité Lebesgue de tout ensemble de réels qui
est PCA, c'est-à-dire projection du complémentaire de la projection d'un
borélien, etc.

D'autres résultats d'indépendance sont du type plus subtil suivant :

(**) — La théorie T + NC(T) prouve NC(T+ A),

si la théorie T + NC(T) n'est pas contradictoire alors elle ne prouve
pas NC(T + Ä),

ou bien T prouve ~iA, et, a fortiori, T prouve alors ~iNC(T + Aj),
ou bien T ne prouve ni A ni ~\A.

Des exemples de tels énoncés A sont

— le problème d'Ulam sur l'existence d'un ensemble infini admettant un
ultrafiltre non principal stable par intersections dénombrables,
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— l'assertion de la mesurabilité Lebesgue de tout ensemble de réels qui est

PCPCA, c'est-à-dire projection du complémentaire de la projection du
complémentaire de la projection (sic) d'un borélien, etc.

10.3. Le pessimisme de spécialistes de théorie des nombres devant certaines

conjectures qu'ils jugent désespérées (comme l'est la conjecture d'Erdös-Woods

pour certains mathématiciens) pourrait être l'expression de leur intuition de

résultats du type (*) ou (**).
Un argument logique montre que tout énoncé arithmétique de type

universel, tel que le problème de Fermât VnVxVyVz[n< 2 v x" + j/Vz"], qui
n'est pas réfutable dans une théorie axiomatique T comme l'arithmétique du

premier ordre de Peano est, en fait, vrai dans la structure N. En effet,

A est alors vrai dans un modèle (standard ou non) de T et, comme N est

isomorphe à un segment initial de ce modèle, l'énoncé A est également
vrai dans N.

Il serait bien surprenant que la vérité d'un énoncé arithmétique soit
établie par de telles méthodes, aussi est-ce plutôt à des résultats du type (**)
(ou pire...) auxquels il faut s'attendre.
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