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148 S. GRIGORIEFF ET D. RICHARD

§4. AUTOUR DU PROBLEME DE J. ROBINSON

4.1. Rappelons, avant d’en venir aux premiers résultats concernant le
probléeme de JR, dans quelle problématique logique celui-ci s’est posé.

Ce probleme releve de I’étude du pouvoir d’expression des langages faibles
de Parithmétique du premier ordre de N et de Z. Il s’agit de savoir ce qui
peut s’exprimer dans les structures arithmétiques formées de prédicats et
fonctions dont la portée est — a priori — réduite.

4.2. Le premier résultat spectaculaire dans ce domaine de la définissabilité
remonte a la thése du logicien K. Gddel:

THEOREME (Godel, 1931). La classe des fonctions et relations qui sont
définissables dans la structure (N; 4+, x ; =) par des formules du premier
ordre du langage associé (+ , x ; =) est stable par le procédé de construction
par récurrence.

Ce resultat permet de voir que toutes les fonctions et relations arith-
metiques de la pratique mathématique sont définissables (au premier ordre)
a partir de l'addition, la multiplication et I’égalite.

Ainsi,

La structure {INN; +, x; =) est la structure logique essentielle de larith-
métique ; I'objet de I’étude des langages faibles est donc de déterminer la part
de cette structure que I'on peut retrouver a partir d’eux.

Remarque. Pour saisir la portée du résultat de Godel, il convient
d’observer que le procédé de construction par récurrence

— n'est pas une définition explicite d’une fonction f & partir d’autres
fonctions,

— mais une caractérisation d’une fonction f comme l'unique solution
d’un systeme d’équations fonctionnelles.

Pour traduire une telle caractérisation en termes de formule logique il
est nécessaire — a priori — d’utiliser des quantifications portant sur les
fonctions et non sur les entiers seulement.

On pourra aussi se rendre compte de la force de ce résultat en essayant
de définir directement ’exponentielle ou I’énumeération des entiers premiers
par des formules du premier ordre du langage (+, X ; =).

4.3. Ce résultat de K. Godel a regu sa forme optimale dans la solution
du 10-iéme probléme de Hilbert, achevée en 1972 (cf. [DM]) et due a
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J. Robinson. M. Davis. H. Putnam et Y. Matijjacevitch. Ils montrérent que
toute partie récursive (C'est-a-dire algorithmiquement reconnaissable) de N*
est diophantienne et peut donc étre définie par une formule du type suivant:

Vs e IV [PV e Vi X s e X)) = OV ces Vs X1 s veer X )]

ou P et O sont des polynomes a coefficients dans N.

44 Bien entendu. des langages trop réduits ne permettent pas en général
de retrouver toutes les relations et fonctions usuelles de l'arithmétique.
Ainsi. comme il a &té vu en 3.8.
I |
T

— l'égalite et l'addition ne suffisent pas a définir la multiplication,

alite et le successeur ne suffisent pas a définir I'ordre,

L
{]e]

(g/]
{le]

alité et l'ordre ne suffisent pas a définir 'addition,

— l'égalite et la multiplication ne suffisent pas a définir 1'addition
(ni méme 'ordre).

En revanche. I'equivalence:
(xz—=1)(yz=1) = [=Fxy+1)] + 1 sietseulementsi z =0oux + y = z

monire que l'on peut definir I'addition avec le successeur en plus de I'égalité
¢t de la muluplication. résultat observé par A. Tarski (cf. [TA]).
Une formule convenable du langage (S. x ; =) est

[ Zérolx) - Zeroly) «—>Zéro(z)] A [S(x x z)x S(yxz) = S[zxz)x S(xx 7]

ou Zéroix) est la formule Yu(x x u=x).

+3. Le premier résultat d'importance relatif aux langages plus réduits que
le langage (. x : =) a été obtenu par J. Robinson dans sa thése, publiée
en 1949 (cf. [RI]):

L addition er la multiplication sont définissables dans la structure (NS D.

Bien sur. I'égalite est déja définissable de facon triviale dans la structure
N: ) par la formule (x}y) A (v[x). Ainsi,

THEOREME (J. Robinson. 1948). Les structures (N S: 1> et <N+, x; =)
définissent les mémes relations et fonctions.

Preuve (esquissée). L'argument de J. Robinson est fondé sur I'équi-
valence suivante (elle-méme conséquence simple du Théoréme de Dirichlet,
¢ 2.2): - = xy si et seulement si pour tout premier p ne divisant ni x
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- mi y, il existe x' et ), premiers entre eux et premiers avec x et y et
vérifiant les équations de congruence

xx'= —1(modp), yy=—1(modp) et zxy =1 (modp).

Comme la fonction ppcm est définissable dans la structure (IN;|)> et
donne le produit de deux entiers premiers entre eux, on voit simplement
que cette condition permet de définir la multiplication avec S et |. On
conclut a laide de 4.4.

J. Robinson montre aussi que I'ensemble N est définissable en termes
d’addition et de multiplication dans le corps Q des rationnels (c’est-a-dire
que le fait, pour un rationnel, d’étre un entier naturel est définissable au
premier ordre dans le langage de 'arithmétique sur Q). Ce dernier résultat
est central dans I’étude des théories indécidables.

Dans ce méme travail, et dans le but de trouver d’autres axiomatiques
naturelles de P'arithmétique, J. Robinson pose la question qui nous inté-
resse ici:

PRrROBLEME (J. Robinson). Peut-on définir 'addition et la multiplication en
termes d’égalité, successeur et coprimarité?

4.6. Les premiers résultats sur le probleme de J. Robinson figurent dans la
these d’A. Woods (cf. [WA]) soutenue en 1981. Celui-ci montre que

THEOREME (A. Woods, 1981). Les structures {N; <, 1> et {N; 4+, X ; =)
définissent les mémes relations et fonctions.

On a vu (cf. 3.10) que légalité est définissable dans les structures
(N; +;1> et (N;S§, x; L) Comme laddition est définissable dans la
structure {N; S, x ; =) (cf. 4.4) et que la relation d’ordre x < y est définis-
sable dans la structure {N; + ; =) (par la formule Ji[(x+i)=y A (i+i=1i)]),
on déduit le résultat suivant:

COROLLAIRE (A. Woods). Les trois structures <IN; +; L>, (N; S, x; L)
et (N;+, x; =) définissent les mémes relations et fonctions.

Remarque. 1°) En revanche, la structure (N; x ; =, 1) ne permet pas
de définir I'addition. Ceci résulte de 'exemple 1 de 3.8 puisque la relation L
est déja définissable dans la structure {N; x ; =) et n’apporte donc rien
- de plus.




CODAGE ZBV 151

2°) Comme l'égalité est aussi définissable dans la structure {N;Pred, x; 1)
_ ou Pred est la fonction prédécesseur, qui vaut 0 en 0 — (cf. 3.9),
cette structure permet de définir S et est donc passible du méme Corollaire

ci-dessus.

47 Dans le méme travail, A. Woods relie ces problémes de définissabilité
logique & des problémes ouverts d’arithmeétique.

1l prouve aussi que, dans le probléme de J. Robinson, I’égalité est super-
fétatoire (cf. 4.12 pour une preuve de ces résultats).

THEOREME (A. Woods). Les assertions suivantes sont équivalentes:

i) Le probléme de J. Robinson admet une réponse positive: on peut définir
Paddition et la multiplication en termes d’égalité, coprimarité et fonction
successeur.

iy On peut définir Pordre ou laddition ou la multiplication en termes
d’égalité, coprimarité et fonction successeur.

ii) On peut définir légalité, Taddition et la multiplication en termes de
coprimarité et fonction successeur.

On peut définir lordre ou laddition ou la multiplication en termes de
coprimarité et fonction successeur.

ii)

iii) On peut définir Pégalité en termes de coprimarité et fonction successeur.

1v) La conjecture d’Erdos-Woods.

Remarque. Comme S est une injection, il est équivalent de dire que S
et L définissent I’égalité ou de dire qu’ils définissent le graphe de S:
en effet, x = y si et seulement s’il existe z tel que (x,z) et (y, z) soient
tous deux dans Gr (S).

4.8. Rappelons la difference — quant au pouvoir de définissabilité — entre
une fonction et la relation constituée par son graphe. Ainsi,

— La relation d’égalité est trivialement définissable a partir de chacun des
graphes Gr (S) et Gr (Pred) des fonctions S et Pred par les formules suivantes:

Az[Gr (S) (x, 2) AGr(S) (¥, 2)] et  3Iz[Gr(Pred) (z, x) A Gr (Pred) (z, y)] .

— La relation d’¢galité n’est pas — a priori — définissable a partir de la
relation L et des fonctions S et Pred (cf. le Théoréme ci-dessous).
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— En présence de la relation d’égalité chacune des deux fonctions S et
Pred permet de définir les deux graphes de S et de Pred.

Sans égalité il n’en est plus — a priori — de méme.

Cependant, le Théoreme de Woods reste valable en remplagant la fonc-
tion S par Pred ou bien par S et Pred (cf. 4.12 pour une preuve).

THEOREME. Les assertions du Théoréme 4.7 sont également équivalentes
aux suivantes:

i)bis On peut définir Iégalité, laddition et la multiplication en termes de
coprimarité et fonction prédécesseur.

li)ter On peut définir I'égalité, addition et la multiplication en termes de
coprimarité et fonctions successeur et prédécesseur.

Les versions ii)'bis, ii)'ter de 1i)'.

iii)bis  On peut définir égalité en termes de coprimarité et fonction prédé-
cesseur.

iii)ter  On peut définir 'égalité en termes de coprimarité et fonctions successeur
et prédécesseur.

49. D’autres travaux récents sur le probléme de J. Robinson figurent
dans [RD1]:

THEOREME (D. Richard, 1985). Toute relation définissable dans la structure
(N; 4+, x,=> et qui ne porte que sur les seuls entiers primaires est
également définissable dans la structure <(N;S; L).

4.10. Le résultat suivant (dont la preuve est lobjet de 4.11 et du §5
ci-dessous) est une version plus forte du Théoréme 4.9, s’exprimant en termes
des équivalences = , introduites en 2.10.

THEOREME. Soit p  une relation définissable dans la structure
(N; 4+, x, =).
1°) p est définissable dans la structure {IN;S; L) si et seulement si elle est
saturée par une relation = ,, ou A est un ensemble fini d’entiers positifs
- ou nuls.

2% p est définissable dans la structure (N;Pred; L) si et seulement si
elle est saturée par une relation =,, ou A est un ensemble fini d’entiers
" négatifs ou nuls.
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3°) p est définissable dans la structure {N; S, Pred; L) si et seulement si
elle est saturée par une relation =,, ou A est un ensemble fini d’entiers

de Z.

N.B. Comme toute relation sur les primaires est saturée pour =i, 1,z
et =, , _ g (cf. le Théoréme 2.12), le Théoréme 4.9, et son analogue relatif
au langage (S, Pred; 1), apparait comme un corollaire de celui-ci.

4.11. La Proposition suivante donne le sens le plus facile a €tablir des
équivalences du Théoreme 4.10.

PROPOSITION. Soit p une relation définissable dans {IN;§, Pred; L)
(resp. (N;S;L>, resp. (N;Pred; L)); il existe une partie finie A
de Z (resp. de N, resp. de — N) telle que p soit (= y)-saturée.

Preuve. Nous prouvons le cas de la définissabilité dans (N; S, Pred; L),
les deux autres sont analogues (en fait, plus simples).

Soit R la famille des relations p pour lesquelles il existe une partie
finie A de Z telle que p soit (= ,)-saturée. Il est clair que R est stable
par opérations booléennes et par projections (opérations qui correspondent
aux connecteurs logiques et aux quantifications). Tout revient donc a montrer
que ‘R contient les images réciproques de la relation 1 par les fonctions
composées des fonctions S et Pred avec les fonctions de brassage (cf. 3.6).
(En termes logiques, ceci revient a montrer que R contient les relations
définies par les formules atomiques.) Comme Pred o S est I'identité, toute
composée des fonctions S et Pred est de la forme S*o Pred’. Il est a noter
que [SoPred’ ] (n) = isin < jet [SoPred’](n) = n + (i—j) sin > j; on ne
peut donc pas simplifier cette fonction.

On voit facilement que, posant 4; ; = {—j,...0} U {i —j}, si x =, y
alors

— sl x<j ou y<j alors A4;; contient —x ou — y et donc x =y
(cf. Fait 2.10, 3°)),

— x+(i—j) Fy + (—))

Il en résulte que SUPP [[SPred’] (x}] = SUPP [[SPred’] (y)]. Toute
composee des fonctions S et Pred avec les fonctions de brassage (cf. 3.6)
est de la forme (x,,..,x,)— (S"[Pred’!(xy)], ...r S'a[Pred’s(x,)]), ou
o {l,.,q}— {1, .., ph :
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Il est clair que 'image réciproque de la relation L par une telle fonction
(nécessairement a valeurs dans N2, ie. ¢ = 2) est une relation = , saturée,
oud = A4, ;, VA, ;-

Remarque. La preuve précédente montre, en fait, que si p >0, g = 0
et si les termes figurant dans une formule F(x, x,, ..., x;) et dans lesquels
intervient effectivement la variable x sont tous de la forme S'[Pred’(x)]
avec j<p et i —j<g, alors la relation définie dans la structure
{N; S, Pred; L) par la formule F(x, x,, ..., x,) est saturée en sa premiere
variable pour la relation =,_, . (ie. si SUPP(a+i) = SUPP(b+i)
pour tout i dans {— p,..,0,.., g}, alors, pour tout p-uplet (c;, .., cy), la
structure {N; S, Pred; L) satisfait la formule F au point (a, ¢y, ..., ¢;) si et
seulement si elle la satisfait au point (b, ¢y, ..., ¢;)).

4.12. Preuve des Théoremes 4.7 et 4.8

Les résultats de Woods mentionnés en 4.6 (qui, ici, sont obtenus au §9)
montrent I'équivalence de 1), ii), ii)bis, ii)ter) avec leurs versions primées.

i) « i) — iiter

! f
On montre les implications  ii)ter — 1) = iii)ter = 1v)
T U

iii)bis « ii)bis — ii)ter
1°) Les implications notées par des fleches simples sont triviales.
2°) i) = iii)ter est prouvée plus loin, c’est le Corollaire 6.6.
3°) iv) = 1ii) et iv) = ii)bis se prouve a laide du Théoreme 4.10 (dont la
preuve est donnée au § 5).

Appliquant la Remarque 2.10, la conjecture d’Erdos-Woods montre
lexistence de k tel que les restrictions a N de =, 4, et =, o
coincident avec I’égalité. Toute relation sur N est alors — trivialement —
saturée a la fois pour = et =, . Le Théoréeme 4.10 montre donc
que toute relation est définissable avec S et L ou bien Pred et L; cest

en particulier le cas de =, + et Xx.

4°) iii)ter = iv) est une autre application du Théoréme 4.10 (en fait, de sa
partie facile qu’est la Propriété 4.11): si I'égalité est (S, Pred; 1)-definissable
alors elle est saturée pour un certain =,_, 4, ce qui implique (cf. Re-
marque 2.10) la conjecture d’Erdos-Woods.

N T N
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Remarque. L’implication iv) = iii) peut se voir directement (sans passer
par le Théoréme 4.10). La conjecture d’Erdos-Woods, si elle est vraie, fournit
la définition simple suivante de 'égalité dans le langage (S; 1):

Vz[[zL x>z L y] A [zLS(x)2zLSG)] A ... A [2LSK(x)>z LS*(¥)]] -

Cette conjecture d’Erdés-Woods montre I’équivalence de Tégalite¢ x =y
avec la condition suivante:

x>k et y>k et SUPP(x—i) = SUPP(y—i) pour tout ie {0, 1,.. k},
ou bien x et y sont tous deux inférieurs a k et égaux.

Désignant par Egal,(x) une formule qui définit {n} dans la structure
(N;Pred; L), on déduit alors de la condition précédente une definition
simple de I’égalité dans la structure (N ; Pred; L):

[Egal;(x)<Egal,(y)] A .. » [Egal(x)Egal(y)]
A Vz[[zLxozLy] A... a[zLPred¥(x)«>z L Pred"(y)]] .

4.13. Mentionnons enfin le résultat suivant qui étend a Z le Théoréme 4.9
ci-dessus:

THEOREME. Toute relation ou fonction arithmétique définie sur 'ensemble
ZPP des primaires de Z et de leurs opposés est (S; L)-définissable.

Remarquons que contrairement a ce qui peut sembler a premicre vue, le
passage de N 4 Z n’a rien d’automatique. La preuve de ce résultat constitue
d’ailleurs 'objet principal de 'article [RD2].

La difficulté principale est ici de reconnaitre le signe d’un élément de ZPP.
En particulier, on ne sait pas distinguer avec le langage (S; 1) st un diviseur
premier de x — 1 divise | x| — lou| x| + 1.

On peut voir (cf. [RD2]) que le Théoréme précédent implique le Théo-
reme 4.9. Il a aussi les Corollaires suivants.

1°) Une généralisation du Théoréme de Woods:

L’arithmétique de Z (i.e. ’addition et la multiplication) est (S; 1)-définissable
sur Z si et seulement sl existe un entier k (nécessairement > 2) tel que
tout entier x de Z soit uniquement déterminé par les supports des entiers
x+ 1L,x+ 2 .,x + k.

2°) La définissabilit¢ de l'arithmétique de Z par successeur et divisibilité
(question posée par J. Robinson dans larticle ou elle prouve le résultat

analogue sur. N). Une preuve directe du méme résultat se trouve aussi en
[RD3].
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3°) Des résultats nouveaux de définissabilité de I’addition et de la multi-
plication a partir de (S, +; L) oude (<, L) sur Z.

Il est a noter que S n’est pas définissable par addition et coprimarité
sur Z: en effet, x — (—x) est un automorphisme de Z qui respecte + et L
mais pas S.

§ 5. LA METHODE DE CODAGE ZBV ET LE PROBLEME DE J. ROBINSON

5.1.  La méthode de codage ZBV

Les Théorémes ZBV et LC (cf. 2.2 et 2.3) et leur Corollaire 2.4 permettent
des codages qui s’avérent particuliérement performants dans I’étude du
pouvoir de définissabilité des langages (S; 1) et (Pred; L).

La méthode de codage ZBV consiste a considérer comme codes d'un
entier  x les supports ou bien les diviseurs primitifs .des formes du type
p*t 1, ou p est premier.

On ramene ainsi certaines questions arithmétiques d la théorie des ensembles
finis de nombres premiers; en particulier, a des questions sur leur combinatoire.

Par ailleurs, chaque ensemble fini de nombres premiers (ou fonction de
domaine fini entre nombres premiers) est lui-méme codable (de multiples facons)
par un seul nombre premier via la méthode indiquée en 2.1 combinant le
Théoréme de Dirichlet et le Théoréme des restes chinois. Un tel code joue
alors le réle de mémoire dans laquelle est stocké ensemble fini de premiers
(ou la fonction) considéré(e).

5.2. Avant de passer a des applications de la méthode ZBV, nous montrons
quelques résultats simples sur la mise en place dans la structure (N; L)
d’éléments d’une théorie des ensembles finis par le biais des supports d’entiers:
I’ensemble de base est P, chaque partie finie X de P est codée par les
entiers ayant X pour Support.

La relation d’inclusion entre parties finies de P se traduit sur leurs codes
par la relation SUPP (x) = SUPP (y).
Comme cette inclusion entre supports a lieu si et seulement si tout entier
premier avec y est premier avec x, on voit quelle se traduit dans la
structure {N; L> par la formule Vz[(zLly)—>(zLlx)], notée SUPP (x)
< SUPP (y).
A partir de cette relation, on peut definir la relation d’égalité entre
supports et les opérations ensemblistes d’union, intersection et différence des
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