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142 S. GRIGORIEFF ET D. RICHARD

Remarques. 1°) La restriction |y — x| # 1, triviale dans ii),, ne peut
étre omise dans iii),. En fait, les conditions suivantes sont équivalentes:

A) y = x + 1 et pQuot(x, p) = pQuot(y, p) (mod &) pour tout premier
p # o

B) (x,y) = (0,1) ou bien o est premier et (x, y) = (¢*—1, o) pour un
k> 1.

2°) Le statut des assertions-ii), , iii), et iv), reste ouvert. On note cependant
qu’elles ne sont équivalentes a i) puisque

Quot (0, p) = Quot (2, p) = 0 pour tout premier p # 2.
Reste (0, p) = Reste (2, p) (mod 2) pour tout premier p .

§ 3. PRELIMINAIRES DE LOGIQUE

3.1. Les langages formels logiques que nous considérerons sont ceux, dits
du premier ordre, qui ne comportent qu'un seul type de variables. Dans le
cadre arithmétique auquel nous nous intéressons, ces variables sont alors
destinées a varier sur ’ensemble N des seuls entiers naturels et non sur
les ensembles, relations ou fonctions sur N.

Ainsi, les formules ne permettent de traduire que les seules quantifications
sur les entiers et non sur les relations ou fonctions comme il est usuel et
tacite de le faire en mathématiques (en particulier dans les définitions par
induction).

Un langage logique du premier ordre L est caractérisé par une liste
de symboles spécifiques a chacun desquels est attaché un caractére relationnel
ou fonctionnel ainsi qu'une arité (i.e. le nombre des arguments). En pratique,
on désignera un langage L par la simple liste de ses symboles spécifiques
fonctionnels puis relationnels, omettant d’expliciter les arités (rendues
évidentes par le contexte).

A partir des variables on construit les termes de L par « composition »
des symboles fonctionnels. Par « application » des symboles relationnels aux
termes, on obtient les formules atomiques. Les opérations de négation,
conjonction, implication et quantifications appliquées aux formules atomiques
donnent enfin les formules de L.

3.2. Soit L = (fy, ., fs Ry, .., R,) un langage du premier ordre.
Une structure Q = {X; @y, ., Opm; P1, - Pny du langage L est la donnée
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— d’un ensemble de base X,

— de fonctions @y , ..., ®,, sur X qui interprétent les symboles fonctionnels
du langage L (en respectant le nombre d’arguments de ces symboles),

—  de relations py, .., p, sur X qui interprétent les symboles relationnels
du langage L (en respectant le nombre d’arguments de ces symboles).

Une relation p a k arguments sur X est dite Q-définissable lorsqu’il
existe une formule F(x,, .., x,) du langage L pour laquelle on a I'équivalence
suivante:

un k-uplet (ay, .., a,) déléments de X estdans p si
structure Q satisfait la formule F au point (ay, ..., a).

Une fonction est dite Q-définissable lorsque son graphe est une relation
Q-définissable.

3.3. Remarque. Par un abus commode et usuel, on eonfond souvent une
structure de base N avec le langage associ¢ L = (f;, - fm; Rys - Ry)-

En particulier, les symboles du langage logique pour les prédicats et
fonctions (syntaxe) d’une telle structure sont alors confondus avec ceux
désignant les relations et fonctions qui les interprétent dans N (‘'sémantique ).

Ainsi, les lettres S, +, x, =, 1, | désignent tant les fonctions successeur,
addition et multiplication, les relations d’égalité, de coprimarité et de divi-
sibilite que les symboles de fonctions et de relations associés dans un langage
formel logique.

Les expressions « le langage (®q, .., Pps Py s s P,) définit... » et « la struc-
ture {N; @1, ey O3 P1s - Pny  définit... » sont donc synonymes.

3.4. Remarques. 1°) 1l est important d’observer que nous considérons
aussi des structures qui peuvent ne pas contenir la relation d’égalité (et
donc des langages sans symbole d’égalité). Cest le cas de la structure
(N; §; L), notée aussi (S; L), qui est le sujet principal d’intérét de ce travail.

2°) Toute structure doit cependant contenir au moins une relation afin
quil y puisse €tre défini quelque chose. En termes de langage, on voit que,
sans symbole relationnel, le discours logique ne permet pas d’exprimer des
propriétés et de décrire des relations et fonctions sur une structure mais
ne peut que se borner 4 nommer des objets de celle-ci. Autrement dit,
sans symbole relationnel il n’y a que des termes et pas de formules.

3.5. Une fonction ¢ et la relation Gr(p) constituée par son graphe ne sont
pas, en genéral, équivalentes quant au pouvoir de définissabilité. Tout ce qui
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est définissable dans la structure (X ; @, .., ®,; P1s - Pn, GH(®)> I'est aussi
dans la structure {X; @i, .., Opm, ®; Py, Puy. Si cette derniére structure
permet de définir la relation d’égalité alors la réciproque est vraie. Dans
le cas général, elle est fausse. Par exemple, considérant le graphe de la
multiplication, on voit que:

— T’égalité est définissable dans toute structure (N ; Gr( x), ...» par la formule
YuVo[ Gr( <) (x, u, v) <> Gr(x) (y, u, v)] .

— mais elle ne Pest pas dans la structure (NN; x; L) (cf. 'exemple 3.9
ci-dessous).

3.6. La classe des relations définissables dans une structure peut aussi se
deéfinir en termes ensemblistes a laide des notions introduites ci-dessous.

On note Proj, y,, .., la fonction projection (xi, ..., x,) = (X, ..., X; ) de
XPdans X%, oul <i; <..<i, <p.

Si o est une fonction de {1, 2, .., g} dans {1, 2, .., p}, on appelle fonction
de brassage la fonction f,:(x;, .., X,) > (Xg1)s - Xgg) qui envoie X? dans
X% Ces fonctions de brassage permettent d’ajouter de nouvelles variables
(cas ou g < p et ¢ est l'injection canonique de {1, 2, ..., ¢} dans {1, 2, ..., p}),
de démultiplier certaines variables (cas ou g > p), de permuter les variables
(cas ou p = g et o est une permutation de {I, 2, .., p}), ou encore d’iden-
tifier certaines variables (cas ou ¢ n’est pas injective).

PROPOSITION. 1°) La classe des relations définissables dans une struc-
ture Q de base X est la plus petite classe R de relations sur X
telle que:

i) Les relations p,,..,p, sont dans R, ainsi que toutes leurs images
réciproques par les fonctions qui sont des composées des fonctions
@y, .., §,, et des fonctions de brassage.

i) La classe R est stable par les opérations booléennes.
i) La classe R est stable par image directe des fonctions projections.

2°) Cette classe R est stable par image réciproque des fonctions qui sont
des composées des fonctions @4, ..., ®,, et des fonctions de brassage.

Les conditions i) a iii) traduisent la construction des formules du langage L:
— les formules atomiques correspondent a la condition 1),
— les connecteurs des formules correspondent aux opérations booléennes,

— toute quantification existentielle correspond a une projection.
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3.7. Remarque. Cette caractérisation ensembliste de la notion de définis-
sabilité dans une structure Q se simplifie dans le cas ou la relation d’égalité
sur X est Q-définissable; on peut alors remplacer la condition 1) par la
condition plus simple suivante:

1*) Les relations py,.., p, et les graphes des fonctions @y, .., ®, sont
‘tous dans R, ainsi que leurs produits par des X*.

3.8.  Une méthode commode, dite de Beth & Padoa (cf. [BE]), pour montrer
des résultats de non-définissabilité est fondée sur le résultat suivant, di a
Svenonius (cf. [PB] p. 241).

PROPOSITION.  Soit Q = <{N; @1, ey O P1s s Pp» Py Une structure du
langage L = (fl 5 weey fm: Rl > e Rn: R)

1°) Les trois conditions suivantes sont équivalentes :

1) La relation p west pas définissable (par une formule du langage
réduit L\{R}) dans la structure réduite <(IN;Qy, ... ®p} Pys s Pod-

i) 11 existe une structure O = <{X; Yy, .., Up;Tysor T,, Ty et une fone-
tion § de X dans X telles que

— les deux structures Q et O vérifient exactement les mémes
énoncés du langage L;

— la fonction & ne respecte pas la relation T mais respecte les
relations t; et leurs images réciproques par les fonctions qui sont
des composées des fonctions \; et des fonctions de brassage (cf. 3.6)
(Cest le cas, par exemple, si & respecte les relations t; et les

fonctions ;).

ii) Il existe une structure O = {X;V, .., \,,; Tis - Ty, T) €t une bijec-
tion & de X dans X telles que

— les deux structures Q et O vérifient exactement les mémes
énoncés du langage L;

— la fonction & respecte les relations 1, et les fonctions \r; mais
pas la relation .

(i.e. & est un automorphisme de la structure réduite

O = X5y, e Uy Ty s oy T,
mais pas de la structure © ).

2°)  Dans le cas ou la relation p; est la relation d’égalité sur N, alors
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on peut aussi faire en sorte que la relation =T, précédente soit la relation
d’égalité sur X.

Remarque. Si p est I’égalité sur N, alors ou bien £ n’est pas injective,
ou bien la relation t de la condition iii) n’est pas I’égalité sur X.

Exemples. 1°) On voit que le langage réduit a I’égalité et a la multi-

plication ne définit pas Pordre (ni — a fortiori — I’addition) sur N en
considérant
— la structure @ = (N; x; =, <>

— et la bijection £ de N sur N définie comme suit: £(x) s’obtient a
partir de x en échangeant, dans la décomposition de Gauss, les exposants
de 2 et 3 et en laissant inchangés les autres.

2°) On voit que le langage réduit a I’égalité et au successeur ne définit
pas l'ordre en considérant

— la structure ® = (X; f, =, <) suivante du langage (S; =, <) ou
X={ Y 2%neN}u{2+ Y 27lnez}
0<is<n —ow<i<n
u{5+ Y 27lneZz},
—w<i<n

= et < sont les relations d’égalité et d’ordre usuelles sur les réels,

fiX—X, f@a+y2=a+ Y 271

i<n —is<n+1
ou (a,n)e [{1} xN]J u [{2} xZ] u [{5} x Z]
(cette structure ® satisfait les mémes énoncés que {(N; S, =, <));

— et 'involution o qui échange 2 + X avec 5 + X et laisse invariants
les autres points de X.

3°) On voit que le langage réduit a la multiplication et a la coprimarité
ne définit pas I’égalité en considérant ’

— lastructure @ = {N; x; =, 1>

— et la fonction £ de N sur N définie comme suit: &(x) est le produit
des facteurs premiers de x, 1e. & réduit a 1 les exposants des primaires
dans la décomposition de Gauss de x.

3.9. Contrairement a ce qu'on peut penser a priori, il n’est pas toujours
trivial de montrer que la relation d’égalité est définissable dans une structure
(cf. 4.8 et e § 5).

VAN
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Par exemple, la définissabilité de I'égalité dans chacune des structures
(N; +: L), (N; S, x; L)y et <N;Pred, x; L) (ou Pred est la fonction
prédécesseur, qui vaut 0 en 0) nécessite les équivalences suivantes (consé-
quences non triviales des Corollaires de 2.8 et 2.6) entre les conditions:

i) x ety sont égaux;
ii) pour tout m = 0, on a SUPP (x+m) = SUPP (y+m);
ii) SUPP(x) = SUPP(y) et, pour tout m >0, on a SUPP(mx+ 1)
= SUPP (my+1);
iv) SUPP(x) = SUPP (y), x et y sont simultanément nuls ou non nuls, et,

pour tout m > 0, on a SUPP[Pred (nx—1] = SUPP [Pred (my—1)];

Ces conditions se traduisent par des formules des langages (+; L) et
(S, x5 1)

Vivp {[pL(x+i)] < [pL(y+i)},
Vp [(pLx)>(pLy)] A VmVp {[pLS(m x x)] < [pLS(mx y)1} ,
A(x, y) A ¥p [(pLxy>(pLy)] A Vm¥p {[pLPred (mx x)] <> [pLPred (m x y)1}

ou A est la formule [Zéro (x)«<Zéro (x)], Zéro (x) étant la formule Vu(x x u= x).

3.10. Pour conclure cette revue des notions de Logique utilisées dans cette
étude, nous précisons la notion — usuelle mais implicite en général —
d’extension par définitions d’une structure (ou d’un langage).

Soit Q une structure de base N du langage L et soient V,,..,\,
des relations sur N et 1, .., 7, des fonctions sur N qui sont définissables
dans la structure Q (par des formules du langage L).

Il est commode de considérer

— la structure ' obtenue en rajoutant a Q ces relations et fonctions
\Jli et TJ,

— le langage L' associ¢ a €, obtenu en rajoutant au langage L de
nouveaux symboles de relation et fonction R,, .., R, et f}, .., f,.

ProrosITION. A toute formule F(x,,..,x,) du langage L on peut
associer une formule du langage L, notée Trad [F](xy, .., x;), de sorte que
la relation sur N définie par F(x,, .., x;) dans la structure €' coincide
avec celle définie dans la structure Q par Trad [F] (x,, ..., X;).

Remarque. Comme 1l a déja été dit en 3.3, nous utiliserons — abusi-
vement — souvent les notations \; et t; au lieu de R; et f;.
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