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130 S. GRIGORIEFF ET D. RICHARD

de la fonction puissance,

ou du prédicat de résiduation quadratique,

ou de restrictions faibles soit de I’addition, soit de la multiplication,
soit de la division.

D’article se conclut au § 10 sur des perspectives d’é¢tude de la conjecture
par les méthodes de codage, mais aussi sur une réflexion de logicien tentant
de comprendre I’éventuel caractere « désespéré» de certaines comnjectures
arithmétiques comme celle qui nous intéresse.

§ 2. PRELIMINAIRES DE THEORIE DES NOMBRES

2.1. On note N, Z, P les ensembles respectivement formés des entiers
naturels, des entiers rationnels, et des nombres premiers. »

L’ensemble des diviseurs premiers de x est appelé support de x et noté
SUPP (x).

Un outil essentiel est le Théoréme de Dirichlet sur I'infinitude des premiers
dans les progressions arithmétiques u(n) = an + b, pour a L b. Joint au
Théoréme des restes chinois, il conduit a 'existence d’une infinité de solutions
en entiers premiers des systemes de congruences du type

z = 5, (mod ty), ..., z = s, (mod t,)

ou ty, .., t, sont deux a deux premiers entre eux et 0 < s5; < t4,..,0 <5, <¢,.

2.2. Un résultat constamment utilis¢ dans ce qui suit est le Théoreme
découvert par K. Zsigmondy en 1892, et redécouvert ensuite par Birkhoff et
Vandiver en 1904, que nous appelons Théoréeme ZBV et que voici:

THEOREME (Zsigmondy-Birkhoff-Vandiver). Soient x et y des entiers
premiers entre eux tels que 0 <y < x. Pour tout n >0, il existe au
moins un diviseur premier de x" — y" qui ne divise pas x™ — y™ pour
0<m<n (un tel diviseur est dit primitif pour x" — y") excepté dans
les cas suivants:

II

) n=1,x—y 1,x — y na alors aucun diviseur premier
i) n=2,x+y=2" ou u>0;
2

i) n=6x=2y=1

2.3. L’analogue du Théoréme ZBV a propos des formes x" + )" a été
démontré par R. Lucas et R. Carmichael (cf. [CR]).
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TaEOREME (Lucas-Carmichael). Soient x et y des entiers premiers
entre eux tels que 0 <y < x. Pour tout n > 0, il existe au moins un
diviseur premier de x" + y" qui ne divise pas x™ + y" pour 0 <m <n
(un tel diviseur est dit caractéristique pour x" + y") excepté dans le cas ou
n=3x=2 e y=1

Ce théoréme est, en fait, corollaire de ZBV puisque tout diviseur primitif
de x>" — y*" est diviseur caractéristique de x" + y".

24. Si p est premier, nous notons ORD (x, p) l'ordre de x modulo p,
c’est-a-dire le plus petit o tel que x* = 1 (mod p).

Il est clair que p divise (resp. est diviseur primitif de) x* — 1 si et
seulement s1 o est multiple de (resp. est égal a) ORD (x, p).

Les Théoremes ZBV et LC, joints au fait simple suivant lequel le pged
des entiers x" — 1 et x™ — 1 est xP&4=™ _ { montrent le résultat suivant:

COROLLAIRE. Pour tout entier x > 1 et tous entiers o et P:
i) Légalité SUPP (x*—1) = SUPP (xP—1) équivaut a
(@ = P ou bien x est de la forme 2 — 1 avec u > 1 et o et P
éléments de {1, 2}).
ii) Llinclusion SUPP (xP—1) = SUPP (x*—1) équivaut a
(B|o oux estdelaforme?2*— 1avecu > letB = 2)
i) Un entier p est diviseur primitif de x* — 1 si et seulement si
p divise x* — 1 et, ou bien a0 = 1,
ou bien SUPP(x*—1) <, SUPP(x’—1) pour tout B # o tel que p
divise x? — 1.
iv) L’égalit¢é SUPP (x*+1) = SUPP (xP+1) équivaut d
(¢ = B oubien x = 2 et o et B sont éléments de {1, 3}).

Preuve. Cf. les Corollaires 1.7, 1.8 et 1.9 de [RD1] pages 223-224.

2.5. Le Théoréme suivant remonte a C. Stgrmer (1897, cf. [SC1] et [SC2]).

THEOREME (Stgrmer). Soient p,, .., p, des premiers distincts, K, oy, ..., o,
des entiers strictement positifs. Pour 1 <i < n, posons g =1 si o

i

est impair et € = 2 si o, est pair. Posons aussi D = K.p3....pe.
Si x*—1=K.p%....p™ alors x est la solution fondamentale de
Péquation de Pell-Fermat x*> — Dy* = 1.
Si x(x+1) = K.p$t.....p*™ alors 2x + 1 estla solution fondamentale

de Péquation de Pell-Fermat x* — 4Dy? = 1.
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COROLLAIRE.

Si E est un ensemble de n entiers premiers distincts, il .y a au plus
2" entiers x tels que SUPP[x(x+1)] < E.
Ainsi, pour tout entier a, [lensemble ST(a) des entiers b tels que

SUPP (a) = SUPP(h) et SUPP(a+1) = SUPP(b+1)

est lui aussi fini.

Les entiers naturels x et y sont égaux si et seulement si les conditions
suivantes sont simultanément satisfaites :

1) SUPP(x—1) = SUPP(y—1) et SUPP(x+1) = SUPP(y+1);

2) pour tout premier p et tout ie{—1, +1}, les valuations de p
dans les décompositions primaires de x + i et de y + i ont la
méme parité.

COROLLAIRE 1. Soit A wun ensemble fini d’entiers positifs de méme

support. Il existe un entier N(A) tel que, pour tous x et y dans A, les
conditions suivantes soient équivalentes :

i)

i)

iii)

X =Y
Il existe m > N(A) tel que
SUPP (x+m) = SUPP (y+m) et
SUPP (x+m+1) = SUPP(y+m+1),
Il existe m > N(A) tel que

SUPP (mx+1) = SUPP(my+1).

ii)bis Il existe m > N(A) tel que

E

SUPP (mx—1) = SUPP (my—1).
Preuve. Soit E I'ensemble fini

= {geN:ilexiste (u,v)e A x Atel queu #v et geSUPP(u—v|)}.

Le Théoréme de Stgrmer assure que ’ensemble

est

{ze N:[SUPP [z(z+1)] < E}

fini, majoré par un entier N(A). _
Soient x et y des éléments distincts de A4, avec x < y. Nous montrons

que si 'une des conditions ii) ou 1i1) est vérifiée alors ’entier m est majoré
par N(A).
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Supposons que I'on ait
SUPP (x+m) = SUPP(y+m) et SUPP (x+m+1) = SUPP(y+m+1).

Tout diviseur premier g de x + m ou de x + m + 1 divise alors y — x.
Ainsi, Pentier (x+m) (x+m+1) a un support inclus dans E et donc — par
définition de N(A) — lentier x + m est majoré par N(4). En particulier,
m est majoré par N(A).

Supposons maintenant que 'on ait SUPP (mx+1) = SUPP (my+1). Tout
diviseur premier g de mx + 1 divise alors m(y—x) et donc aussi y — Xx.
Ainsi, Ientier mx(mx+ 1) a encore un support inclus dans E et l'entier mx
est donc majoré par N(A). En particulier, l'entier m est majoré par N(A).

Le cas ou SUPP (mx—1) = SUPP (my—1) est analogue.

COROLLAIRE 2. Soient x et y des entiers positifs ou nuls. Les condi-
tions suivantes soient équivalentes:

) x =y,
ii) x et y ont le méme support et, pour une infinité d’entiers m, on a
SUPP (x+m) = SUPP(y+m) et
SUPP (x+m+1) = SUPP(y+m+1),

iii)y x et y ontle méme support et, pour une infinité d’entiers m, on a
SUPP (mx+1) = SUPP(my+1).

2.7. 1l est intéressant de remarquer que, sans utiliser le Théoréme de
Stgrmer, un autre résultat du méme type peut €tre prouvé en se servant
du Théoréme de Dirichlet.

PROPOSITION. Soit A un ensemble fini d’entiers. Pour chaque x de A,
il existe des entiers premiers p arbitrairement grands tels que
SUPP(px+1)n[ v }SUPP (py+1)] = {2}.
yed\{x
Preuve. Soit d le produit des entiers premiers ne divisant pas x et
appartenant a la réunion des SUPP(Jy—z|) avec y et z dans A. Soit x'
tel que xx' = 1(mod d). On sait qu’il existe des entiers p arbitrairement
grands tels que p = x’ (mod d), c’est-a-dire tels que SUPP (px—1) contienne
SUPP (d). Il nous suffit de montrer que, pour de tels p, on a, pour tout y
de A\{x}
SUPP (px+1) n SUPP (py+1) < {2} .



134 S. GRIGORIEFF ET D. RICHARD

Soit g un diviseur premier de px + 1 et py + 1. Comme g # p et g divise
plx — y|, alors g divise | x — y|. N’étant pas dans SUPP (x), il divise d.
Par suite, g divise px — 1; comme g divise aussi px + 1, on a q = 2.

2.8. L’¢tude des suites d’entiers de méme support remonte au moins a
G. Polya qui prouva un résultat amélioré depuis par M. Langevin (cf. [LM1]).

THEOREME.
1) (G. Polya) Si (a,).y €St une suite strictement croissante dentiers

positifs de méme support alors la suite (a,,;—a,)..n tend vers linfini.
1) (M. Langevin) Si 0 < x <y et SUPP(x) = SUPP(y), alors

|y — x| > [Log (x+y)]1"°.

Ce résultat permet d’améliorer la condition ii) du Corollaire 2 de 2.6
en montrant que la donnée d’une infinité de supports du type SUPP (x+1i)
caractérise x.

COROLLAIRE. Soient x et y des entiers de Z.

Si pour une infinité d’entiers me N on a SUPP(x+m|) = SUPP (ly+m|)
alors x = y.

Preuve. Supposons que ’ensemble
I = {ie N:SUPP (x+i]) = SUPP (ly+i)}
soit infini et que l'on ait x < y. Observant qu’un diviseur premier de

x + iety+idivise y — x, on constate que SUPP (|x+i) < SUPP (y—x).
Le principe des tiroirs montre qu’il existe une partie X de SUPP (y—x)
telle que l'ensemble J = {ie N: SUPP(|x+i|) = SUPP (Jjy+i])} soit infini.
On définit par récurrence une suite strictement croissante d’entiers positifs,
tous de support X comme suit:

a, = x+ieta; = y+i ou i est minimum dans J tel que x+i>0;
a,, = x+jetday,,; = y+j oujest minimum dans J tel que x+j>a,,_;.

La preuve s’acheve en remarquant que (a,,+;1—3d,,)en €St CcOnstante de
valeur y — x et donc ne tend pas vers l'infini avec n, ce qui contredit
le Théoreme de Polya.

2.9. Nous mentionnons enfin un résultat qui souligne la portée de la
conjecture E-W sur N.
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En formalisant la négation de cette conjecture, on obtient la formule
suivante:

Vk3x3y > xVi < k [SUPP(x+i) = SUPP(y+i)].

Il est intéressant de constater que I’énoncé
Vkdxdy > xVi < k [SUPP(x+i) € SUPP(y+i)],

obtenu en remplagant I’égalité par l'inclusion est facilement prouvable.

PROPOSITION.  Pour tout k > 0, pour tout xeN il existe y > x
tel que _

SUPP (x+i) < SUPP (y+i) pour tout ie{0,1,..,k}.

Preuve. On considere le plus grand entier premier p qui divise (x+k)!.
Un y convenable est alors donné par les conditions y > x et y = x (mod ),
ou 7 est le produit des entiers premiers g < p.

Remarque. La condition y > x est ici essentielle. En effet, M. Langevin
a montré que si pour tout x assez grand il existe y < x tel que
SUPP (x+i) < SUPP(y+i) pour tout ie{0,1,2} alors la conjecture
d’Oesterlé-Masser est fausse (cf. [LM2]).

2.10. L’étude de la conjecture d’Erdos-Woods introduit naturellement la
notion suivante:

~/

Définition. Soit A une partie de Z. On note =, la relation d’équi-
valence sur Z définie comme suit:

x =4y siet seulement si SUPP (|x+i]) = SUPP (|y+1i]) pour tout ie A .
Notons [x], la classe de x pour = ,. Le Fait suivant est immédiat.

Farir. 1°) Si A = B alors =, est moins fine que ==

~y

La relation o est I'équivalence grossieére.

2°) Si tel,xel yeZ, A+t = {x+ t:xe A}, — A ={— x:xeAd),
alors x = , .,y si et seulement si x + =,y +t (e [x]4=x+t])—1);
X =_,y sietseulement si — x =, — y (ie. [x]-4=—[—x],).

30) Sl XEZ alOI”S [.)C]{_x} == [x:]{_x+1} = {X}

Remarque. 1°) La conjecture d’Erdds-Woods exprime alors simplement
qu'il existe une constante k telle que la trace sur N de lg relation

~

=0,1,...k Soit la relation d’égalité.
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2°) La conjecture d’Erdos-Woods équivaut aussi aux assertions suivantes:

(E-W)bis Il existe une constante k telle que la trace sur N de la relation

~

=k ..o soit la relation d’égalité.

(E-Witer Il existe une constante k telle que la trace sur N de la relation

~S

=k, ... Soit la relation d’égalité.

Seules les implications (E-W)ter = (E-W) et (E-W)ter = (E-W)bis sont
non triviales. ‘
La premicre resulte facilement de I'égalité [x1 . 2 = [x+kl—r, g — k.
La seconde résulte de I'egalité [x],_,; . oy = [x—Kk]—y,
et des égalités [x];_ .. o = {X} pour x < k.

y + k pour x > k,

ceny

ceey

2.11. Le Corollaire 2.8 et le théoréeme de Stgrmer 2.6 se traduisent par le
théoréme suivant:

THEOREME.

1) Si A estinfini alors =, est la relation d’égalité sur Z.

~/

i1) Les classes d’équivalence de 4 sont finies dés que A contient deux

entiers successifs de Z.

iili)y Si A contient un segment {i,...i + k} de Z,x =,y et x #y alors

| x —yl|= I1 p = IT »p.
peP, pl(x+i)...(x+i+k) p<k+1, peP

Preuve. 1) Supposons A N N infini et x =, y.

Soit meN tel que x + m >0 et y + m > 0. Comme (4—m) N N est
aussi infini et que x + m = ,_,, y + m, le Corollaire 2.8 assure Dégalite
x+m=y+ met donc x = y. Dans le cas ou 4 n (Z\N) est infini on
considére = _ , et on conclut a l'aide du point 2 du Fait 2.10.

ii) Notons [x]4 la classe de x pour = ,.

Le théoreme de Stgrmer montre que les traces de [x]io 1y €t [X]-1, 0
sur N et Z\N sont finies. D’aprés le point 2 du Fait 2.10 on a [x], 4,
= ([xJ0, 3, N) U (—([—x](- 1, 0ynN)), égalité qui montre le caractére fini des
classes de =, ;;. On conclut la preuve de i) a laide du point 2 du
Fait 2.10, en considérant les = , .

iii) Il suffit d’observer que si p divise x + j il divise aussi y + j et donc
X — y.

2.12. Les points i) et iv) du Corollaire 2.4 se traduisent par le théoréme
suivant:
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THEOREME. Les restrictions a Pensemble PP des entiers primaires des
relations = 1 5y, =2 1,00 € =(_1,0,1y coincident avec la relation
d’égalité. Les parties des PP* k > 0, - sont donc saturées pour les relations
déquivalence =, telles que A contienne {0,1,2} ou bien {—2, —1,0}
ou bien {—1,0,1}.

Preuve. Le point iv) du Corollaire 2.4 montre que la seule classe de
= 0,1, dont la trace sur PP n’est pas réduite a un seul ¢lement est celle de 2
dont la trace est {2, 8}. Comme SUPP (2+2) = {2} et SUPP(8+2) = {2, 5},
on voit que 2 %‘9{0, 1,2 8.

Le point i) du Corollaire 2.5 montre que les seules classes de =,_; o,
dont les traces sur PP ne sont pas réduites a un seul élément sont les
classes {p, p?} ou p est un entier premier de Mersenne, i.e. de la forme
p=2"—1 Comme p> +1 = (2*—1)> + 1 = 2[2%2*"'—1)+1], on voit
que SUPP (p>+1) 5 {2} tandis que SUPP(p+1) = SUPP(2¥ = {2}, d’ou
pE 1oyp>Commep —2=2"—3etp>—2=(2“-3)(2"+1) + 2, ces
entiers sont impairs et premiers entre eux, d’ou p 7%{_2, _1.0 D%

Le Fait 2.10 donne le corollaire suivant de ce Théoréme:

COROLLAIRE. Soit n > 0. Sur lensemble PP + [0,n] = {x + s: xe PP
et0 < s < n} larelation =._,_,  _, -coincide avec la relation d’égalité.

Sur Tensemble PP + [—n,0] = {x + s:xePP et —n<s<0 et
x + 5> 0} la relation =, .+ coincide avec la relation dégalité.

Sur Tensemble PP + [—n,n] la relation =, . coincide avec
la relation d’égalité.

Les parties des (PP+[0, n])* (resp. (PP+[—n, 0]), resp. (PP +[—n, n]))
ou k >0, sont donc saturées pour les relations d’équivalence =, telles
que A contienne {—n — 1,..,0} (resp. {0, .., n+1}, resp. {—n, ..., 0, .., n}).

Remarques. 1°) Soit U I’ensemble

U= {-56, —26, —20, — 14, — 11, — 10, — 6,
—5,—4,0,1, 4, 10, 16, 46} .

On peut montrer (en utilisant le Théoréme ZBV) que la restriction de

=(0,1,m a l'ensemble PP des entiers primaires coincide avec la relation
d’égalité si et seulement si m ¢ U.

2°) Les cas d’exception du Théoréme ZBV étant liés aux premiers de
Mersenne, il semble plus difficile de déterminer les m pour lesquels la
relation =, _, ,,, restreinte & PP, coincide avec Iégalité: ce sont les m
tels que, pour tout Mersenne p on ait SUPP (p+m) # SUPP (p®+m).
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Outre la valeur m = — 2 vue dans le Théoréme précédent, on peut
montrer que c’est le cas des entiers m = + ¢* — 1, ol ¢ est un premier non
Mersenne, m ¢ {— p> — p:p est Mersenne et p> + p — 1 est premier} et
mé¢{— 6, — 5} (& cause de p = 3). Les exemples de tels m entre — 20
et 22 sont

- 20, — 18, — 17, — 14, — 12, — 10, — 9, — 8, — 5, — 4, — 3,1, 2, 4,
6, 8, 10, 12, 15, 16, 18, 22.
On peut aussi montrer qu’en revanche, outre 0 et — 1, les valeurs suivantes

de m ne conviennent pas:

— les entiers — 57, — 27, — 21, — 15, — 12, — 11, — 7, — 6, — 5, 3,
9, 15, 45 (a cause de p = 3),

— les entiers — 2695, — 385, — 343, — 336, — 133, — 105, — 91, — 70,
— 63, — 56, — 55, — 43, — 35, — 31, — 28, — 25 — 21, — 13, 5, 7, 14,
35, 49, 140, 252, 287, 329, 2639 (a cause du Mersenne 7),

De fagon générale, pour chaque Mersenne p, ne conviennent pas:

— les entiers m = r(p—1) — p, ou SUPP [(r(r+p)] = SUPP (p—1), entiers
qui sont premiers avec p. En particulier, pourr = — 1, —p—1, —p + 1
on obtient — p* —p+ 1, —p> +p —let —2p + 1).

— les entiers m = p[r(p—1)—1] ou SUPP[(r(r+1)] < SUPP [p(p—1)].
En particulier, on peut prendre r = — 9, — 4, — 3, — 2, 1,2, 3,8, p, — p,
p—1, —p—1,p*—1, — p? dou les valeurs suivantes de m:
— plp*(p—1)+1], — p°, — plp(p—1)+1], — pOp—8), — p(4p—3),
— p(3p—2), —p(2p—1), — p(p+2), — pp+1), p, p*, p(p—2), p2p—3),
p(3p—4), p(8p—9), p(2p—3), plp(p— 1)+ 11, p* (0 —2)+ 1, p[(p+1) (p—1)>—1] .
etc.

2.13. Le symbole de Legendre qui indique qu’un entier x est résidu

. . . , X
quadratique modulo un entier premier p est noté <—>
p
Nous aurons besoin au § 7 du lemme suivant, combinaison du critére
d’Euler (qui caractérise les résidus quadratiques modulo les premiers) et du

Théoreme de Dirichlet:
LEMME. Soit x un entier impair et p un diviseur premier de Xx.

Il existe un entier premier ¢, qui ne divise pas x, tel que <§> = —1
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et <p_> = + 1 pour tout p € SUPP (x)\{p}.

Par suite, (f) = (—1)?% ou o est lexposant de p dans la décom-
q

position primaire de lentier x.
Preuve. Soit s I'un des (p—1)/2 entiers qui ne sont pas résidus qua-
dratiques modulo I'entier p. Considérons le systéme de congruences suivant:

z=1(mod4), z=1(modx/p¥), z = s(modp).

Le Théoréme des restes chinois et le Théoréme de Dirichlet montrent qu’il
existe un entier premier g > x solution de ce systeme.

Soit p’ € SUPP (x)\{p}. Comme g > x, on a ¢ # p’. D’autre part, puisque
g = 1(mod4), on voit que lentier (¢q—1)(p'—1)/4 est pair pour tout
p' € SUPP (x)\{p}. La loi de réciprocité quadratique assure donc

9-()

La condition ¢ = s (mod p) conduit a (ﬁ) = <i> = — 1 puisque s n’est
p p
pas un résidu quadratique modulo p. Ainsi, on a <£> = — 1. La condition

g = 1 (mod p’) nous assure que <£> = (ﬁ) = + 1. Le caractére multi-

q P

plicatif du symbole de Legendre montre alors que:

x\ [P x/p° . . s : :
)~ \g X p = (—=1), ce qui acheve la démonstration.

2.14. Nous aurons besoin au §9 de caractériser I’égalité en termes de
division vue modulo un entier fixé. Si v > 0, nous notons Quot (u, v) et
Reste (u, v) les quotient et reste de la division euclidienne de u par .

LEMME. Soient x,y,o des entiers positifs ou nuls. Si o >3 et
y—x =2 alors il existe un entier premier p # o tel que pQuot (x, p)
# pQuot (y, p) (mod a).

Preuve. 1°) Des inégalités Quot (¢, p) < t/p < Quot(t, p) + 1 on déduit

| Quot (y, p) — Quot(x,p)| — 1 < |y — x|/p
< | Quot(y, p) — Quot(x,p)| + 1.
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On a donc

| Quot (y, p) — Quot(x, p) | — 1 < Quot(ly—x}, p)
< | Quot(y, p) — Quot(x,p)| + 1,

d’ou
Quot(ly—xl|, p) = | Quot(y, p) — Quot(x,p)| + & ou ee{—1,0}.

2°)  Nous traitons d’abord le cas o y — x = 8. Nous utiliserons le Théoréme
de Tchebycheff sur l'existence d’'un premier strictement compris entre x et
2x (ceci pour x = 2).

Si y — x > 8 alors il existe des premiers p et g tels que (y—x)/4 < g
<(p—x2<r<y—x On adonc 2<(y—x)g<4 1<(y—x)r<?2,
d’ou Quot(y—x, q) = 1 et Quot(y—x,r) = 3.

Le point 1°) montre alors que

Quot(y, ) — Quot(x,r) = 1 — ee {1,2}
et Quot(y,q) — Quot(x,q) =1 —ee{3,4}.

3°)  On déduit de ce qui précéde que

gQuot(x, q) — qQuot(y, g) € {3¢,4q} et rQuot(x,r) — rQuot(y, r) e {r, 2r}

Observons que {2,3,4,q,2q,3q,4q} n {2,r,2r} = {2} car r et g sont
premiers et 2 < g < r. Comme o # 2, on voit que les deux cas suivants sont
exhaustifs.

1 cas: o ¢ {2,3,4,q,2q,3q,4q} .
L’entier o ne divise alors ni 3g ni 49q. On peut choisir pour p lentier g
puisque g # o et gQuot (y, 9) — qQuot(x, g) # 0 (mod a).

2¢cas: o¢ {2,1, 2r}.

~ L’entier o ne divise alors ni r ni 2r. On peut choisir pour p lentier r

puisque r # o et rQuot (y, r) — rQuot (x, r) # 0 (mod o).
Ceci acheve la preuve dans ’hypotheése y — x > 8.
~ 4°) Supposons maintenant y = x + 2. Comme o > 3 on a 2Quot(y, 2)
— 2Quot(x,2) = 2 # 0 (mod o) et on peut prendre pour p lentier 2.
 5°) Supposons maintenant y = x + i, i premier, i > 3 (ce qui reglera les cas
-y —x = 3,5,7). On a alors iQuot(y, i) — iQuot(x, i) = i
~ Si o # i alors on peut choisir pour p Pentier i.
- Si a = i alors 2Quot(y, 2) — 2Quot (x, 2) € {2 [i/2], 2([i/2]+ 1)}, ensemble

\
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qui ne contient pas i car i est un premier impair. Ainsi, on peut choisir
pour p l'entier 2.

6°) Supposons maintenant y = x + 4. On a alors
2Quot (y, 2) — 2Quot(x,2) = 4.

Si o # 4 alors on peut choisir pour p lentier 2 (car on a toujours
o # 2).

Si o = 4 alors 3Quot (y, 3) — 3Quot(x, 3) € {3, 6}, ensemble qui ne contient
pas 4. On peut alors choisir pour p ’entier 3.

7°)  Supposons enfin y = x + 6. On a alors 2Quot (y, 2) — 2Quot (x, 2) = 6
et SQuot (y, 5) — SQuot(x, 5) € {5, 10}. Comme o # 2, o ne peut pas diviser 6
et 'un d’entre 5 et 10. Ainsi, on peut donc prendre pour p 'une au moins
des valeurs 2 ou 5.

Le Lemme précédent permet d’¢tablir le résultat suivant:

PROPOSITION. Soient Xx,y, o des entiers positifs ou nuls.

1°)  Les conditions suivantes sont équivalentes :

1) X = ¥.
1), (ou o > 3) Reste(x, p) = Reste(y, p) (mod &) pour tout premier p # o.
i), (ou o > 3) Quot(x, p) = Quot(y, p) (mod o) pour tout premier p # o

et |y— x| # L.

iv), (ou o > 3) pQuot(x,p) = pQuot(y, p) (mod &) pour tout premier p#o
et |y—x|#1L

Preuve de la Proposition.

1°)  Le Lemme précédent se traduit immeédiatement par I'implication iv), = i).

2°) Observons que si p > z alors Reste(z, p) = z. Ainsi, considérant un
premier p supérieur a o, x et y, on voit que ii), implique x = y (mod o).

3°) Légalité x = pQuot(x, p) + Reste(x, p) montre immédiatement que si

x = y(moda) et Reste(x,p) = Reste(y, p) (mod o)

alors pQuot (x, p) = pQuot (y, p) (mod ) .

Par ailleurs, la condition x = y(mod o) implique | y — x | # 1.
Ceci montre que ii), = iv),.

4°) On conclut en remarquant que les implications 1) = ii),, 1) = iii),,
i1i), = iv), sont toutes triviales.
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Remarques. 1°) La restriction |y — x| # 1, triviale dans ii),, ne peut
étre omise dans iii),. En fait, les conditions suivantes sont équivalentes:

A) y = x + 1 et pQuot(x, p) = pQuot(y, p) (mod &) pour tout premier
p # o

B) (x,y) = (0,1) ou bien o est premier et (x, y) = (¢*—1, o) pour un
k> 1.

2°) Le statut des assertions-ii), , iii), et iv), reste ouvert. On note cependant
qu’elles ne sont équivalentes a i) puisque

Quot (0, p) = Quot (2, p) = 0 pour tout premier p # 2.
Reste (0, p) = Reste (2, p) (mod 2) pour tout premier p .

§ 3. PRELIMINAIRES DE LOGIQUE

3.1. Les langages formels logiques que nous considérerons sont ceux, dits
du premier ordre, qui ne comportent qu'un seul type de variables. Dans le
cadre arithmétique auquel nous nous intéressons, ces variables sont alors
destinées a varier sur ’ensemble N des seuls entiers naturels et non sur
les ensembles, relations ou fonctions sur N.

Ainsi, les formules ne permettent de traduire que les seules quantifications
sur les entiers et non sur les relations ou fonctions comme il est usuel et
tacite de le faire en mathématiques (en particulier dans les définitions par
induction).

Un langage logique du premier ordre L est caractérisé par une liste
de symboles spécifiques a chacun desquels est attaché un caractére relationnel
ou fonctionnel ainsi qu'une arité (i.e. le nombre des arguments). En pratique,
on désignera un langage L par la simple liste de ses symboles spécifiques
fonctionnels puis relationnels, omettant d’expliciter les arités (rendues
évidentes par le contexte).

A partir des variables on construit les termes de L par « composition »
des symboles fonctionnels. Par « application » des symboles relationnels aux
termes, on obtient les formules atomiques. Les opérations de négation,
conjonction, implication et quantifications appliquées aux formules atomiques
donnent enfin les formules de L.

3.2. Soit L = (fy, ., fs Ry, .., R,) un langage du premier ordre.
Une structure Q = {X; @y, ., Opm; P1, - Pny du langage L est la donnée
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