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130 S. GRIGORIEFF ET D. RICHARD

de la fonction puissance,

ou du prédicat de résiduation quadratique,
ou de restrictions faibles soit de l'addition, soit de la multiplication,

soit de la division.
L'article se conclut au § 10 sur des perspectives d'étude de la conjecture

par les méthodes de codage, mais aussi sur une réflexion de logicien tentant
de comprendre l'éventuel caractère « désespéré » de certaines conjectures
arithmétiques comme celle qui nous intéresse.

§ 2. Préliminaires de théorie des nombres

2.1. On note N, Z, P les ensembles respectivement formés des entiers

naturels, des entiers rationnels, et des nombres premiers.
L'ensemble des diviseurs premiers de x est appelé support de x et noté

SUPP (x).

Un outil essentiel est le Théorème de Dirichlet sur l'infinitude des premiers
dans les progressions arithmétiques u(n) an + h, pour a Lb. Joint au
Théorème des restes chinois, il conduit à l'existence d'une infinité de solutions

en entiers premiers des systèmes de congruences du type

z s1 (mod u), •••> z sn (mod tn)

où t1,..., tn sont deux à deux premiers entre eux et 0 < s1 < tx,..., 0 < sn < tn.

2.2. Un résultat constamment utilisé dans ce qui suit est le Théorème

découvert par K. Zsigmondy en 1892, et redécouvert ensuite par Birkhoff et

Vandiver en 1904, que nous appelons Théorème ZBV et que voici :

Théorème (Zsigmondy-Birkhoff-Vandiver). Soient x et y des entiers

premiers entre eux tels que 0 < y < x. Pour tout n > 0, il existe au

moins un diviseur premier de xn — yn qui ne divise pas xm — ym pour
0 < m < n (un tel diviseur est dit primitif pour xn — yn excepté dans

les cas suivants :

i) n 1, x — y 1, x — y n'a alors aucun diviseur premier ;

ii) n 2, x + y 2" où u > 0 ;

iii) n f=* 6, x 2, y 1.

2.3. L'analogue du Théorème ZBV à propos des formes x" + yn a été

démontré par R. Lucas et R. Carmichael (cf. [CR]).
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Théorème (Lucas-Carmichael). Soient x et y des entiers premiers

entre eux tels que 0 < y < x. Pour tout n > 0, il existe au moins un

diviseur premier de xn + y" qui ne divise pas xm + ym pour 0 < m < n

(un tel diviseur est dit caractéristique pour xn + yn excepté dans le cas où

n 3, x 2 et y 1.

Ce théorème est, en fait, corollaire de ZBV puisque tout diviseur primitif
de x2n — y2n est diviseur caractéristique de xn + y".

2.4. Si p est premier, nous notons ORD (x, p) l'ordre de x modulo p,
c'est-à-dire le plus petit a tel que xa 1 (mod p).

Il est clair que p divise (resp. est diviseur primitif de) xa — 1 si et

seulement si a est multiple de (resp. est égal à) ORD (x, p).

Les Théorèmes ZBV et LC, joints au fait simple suivant lequel le pgcd
des entiers x" — 1 et xm — 1 est xpgcd("'m) — 1, montrent le résultat suivant:

Corollaire. Pour tout entier x > 1 et tous entiers a et ß :

i) L'égalité SUPP(xa—1) SUPP(xß—1) équivaut à

(oc ß ou bien x est de la forme 2" — 1 avec u > 1 et a et ß

éléments de {1, 2}).

ii) L'inclusion SUPP(xß —1) SUPP(xa —1) équivaut à

(ß | oc ou x est de la forme 2" — 1 avec u > 1 et ß 2).

iii) Un entier p est diviseur primitif de xa — 1 si et seulement si

p divise xa — 1 et, ou bien a 1,

ou bien SUPP(xa-l) c f SUPP(xß-l) pour tout ß ^ oc tel que p
divise xß — 1.

iv) L'égalité SUPP (xa+ 1) - SUPP (xß+ 1) équivaut à
(oc ß ou bien x 2 et a et ß sont éléments de {1, 3}).

Preuve. Cf. les Corollaires 1.7, 1.8 et 1.9 de [RDI] pages 223-224.

2.5. Le Théorème suivant remonte à C. Stürmer (1897, cf. [SCI] et [SC2]).

Théorème (Stürmer). Soient pt,..., pn des premiers distincts, K, oq oc„
des entiers strictement positifs. Pour 1 ^ i ^ n, posons ef 1 si OLt

est impair et et 2 si oc,- est pair. Posons aussi D K.p£( p£nn.

Si x — 1 K.p]1 p*n alors x est la solution fondamentale ' de
l'équation de Pell-Fermat x2 — Dy2 1.

Si x(x+l) — K.p* i p*n alors 2x + 1 est la solution fondamentale
de l'équation de Pell-Fermat x2 — 4Dy2 1.
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Corollaire.
i) Si E est un ensemble de n entiers premiers distincts, il y a au plus

2n entiers x tels que SUPP [x(x +1)] ç= E.

Ainsi, pour tout entier a, l'ensemble ST(a) des entiers b tels que

SUPP (a) SUPP (b) et SUPP (a + 1) SUPP (5+1)

est lui aussi fini.

ii) Les entiers naturels x et y sont égaux si et seulement si les conditions
suivantes sont simultanément satisfaites :

1) SUPP (x-1) SUPP (y -1) et SUPP (x +1) SUPP (y + 1) ;

2) pour tout premier p et tout i e { — 1, +1}, les valuations de p
dans les décompositions primaires de x + i et de y + i ont la

même parité.

2.6. Corollaire 1. Soit A un ensemble fini d'entiers positifs de même

support. Il existe un entier N(A) tel que, pour tous x et y dans A, les

conditions suivantes soient équivalentes :

i) x — y,

ii) Il existe m > N(A) tel que

SUPP (x + m) SUPP (y + m) et

SUPP(x + m+ 1) SUPP(y + m+ 1),

iii) Il existe m > N(A) tel que

SUPP (mx+ 1) SUPP (my + 1).

iii)bis II existe m > N(A) tel que

SUPP (mx—1) SUPP (my — 1).

Preuve. Soit E l'ensemble fini

E {q e N: il existe (u, v) e A x A tel que u +" v et qe SUPP(\u — v\)}

Le Théorème de Stürmer assure que l'ensemble

{zeN: [SUPP [z(z+1)] ç E}

est fini, majoré par un entier N(A).
Soient x et y des éléments distincts de A, avec x < y. Nous montrons

que si l'une des conditions ii) ou iii) est vérifiée alors l'entier m est majoré

par N(A).
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Supposons que l'on ait

SUPP (x 4- m) - SUPP (y + m) et SUPP(x + ra+l) SUPP (y + m + 1).

Tout diviseur premier gdex + moudex + m-bl divise alors y — x.

Ainsi, l'entier (x + m)(x + m+l) a un support inclus dans E et donc — par

définition de N(A) — l'entier x + m est majoré par N(A). En particulier,

m est majoré par N(A).

Supposons maintenant que l'on ait SUPP (mx+ 1) — SUPP (my +1). Tout

diviseur premier q de mx + 1 divise alors m(y-x) et donc aussi y - x.

Ainsi, l'entier mx(mx +1) a encore un support inclus dans E et 1 entier mx

est donc majoré par N(A). En particulier, l'entier m est majoré par N(A).

Le cas où SUPP(mx-l) SUPP(my-l) est analogue.

Corollaire 2. Soient x et y des entiers positifs ou nuls. Les conditions

suivantes soient équivalentes :

i) * y,

ii) x et y ont le même support et, pour une infinité d'entiers m, on a

SUPP (x + m) - SUPP (y A m) et

SUPP (x + m+ 1) SUPP (y + m+1),

iii) x et y ont le même support et, pour une infinité d'entiers m, on a

SUPP (mx + 1) SUPP (my + 1).

2.7. Il est intéressant de remarquer que, sans utiliser le Théorème de

Stürmer, un autre résultat du même type peut être prouvé en se servant
du Théorème de Dirichlet.

Proposition. Soit A un ensemble fini d'entiers. Pour chaque x de A,
il existe des entiers premiers p arbitrairement grands tels que

SUPP (px + 1) n [ u SUPP (py + 1)] <= {2}

Preuve. Soit d le produit des entiers premiers ne divisant pas x et

appartenant à la réunion des SUPP(|y — z\) avec y et z dans A. Soit x'
tel que xx' 1 (mod d). On sait qu'il existe des entiers p arbitrairement
grands tels que p x' (mod d), c'est-à-dire tels que SUPP(px—1) contienne
SUPP(ù). Il nous suffit de montrer que, pour de tels p, on a, pour tout y
de ^4\{x}

SUPP (px +1) n SUPP (py+1) S {2}
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Soit q un diviseur premier de px + 1 et py + 1. Comme q ^ p et q divise

p \ x — y \, alors q divise \ x — y \. N'étant pas dans SUPP (x), il divise d.

Par suite, q divise px — 1; comme q divise aussi px + 1, on a q 2.

2.8. L'étude des suites d'entiers de même support remonte au moins à

G. Pôlya qui prouva un résultat amélioré depuis par M. Langevin (cf. [LM1]).

Théorème.

i) (G. Pôlya) Si (a„)„eN est une suite strictement croissante d'entiers

positifs de même support alors la suite {an + 1 — an)neN tend vers l'infini.

ii) (M. Langevin) Si 0 < x < y et SUPP (x) SUPP (y), alors

| y -x|> [Log y)]1/6

Ce résultat permet d'améliorer la condition ii) du Corollaire 2 de 2.6

en montrant que la donnée d'une infinité de supports du type SUPP(x + i)
caractérise x.

Corollaire. Soient x et y des entiers de Z.

Si pour une infinité d'entiers me N on a SUPP(|x + m|) SUPP(|y + m|)

alors x y.

Preuve. Supposons que l'ensemble

/ {igN: SUPP(|x + i|) SUPP(|y + i|)}

soit infini et que l'on ait x < y. Observant qu'un diviseur premier de

x + i et y + i divise y — x, on constate que SUPP(|x + i|) ^ SUPP (y —x).

Le principe des tiroirs montre qu'il existe une partie X de SUPP (y —x)

telle que l'ensemble J {i e N: SUPP (|x + i|) SUPP(|y + i|)} soit infini.
On définit par récurrence une suite strictement croissante d'entiers positifs,

tous de support X comme suit :

a0 x + / et oq y + i où i est minimum dans J tel que x + / > 0 ;

a2n x+j et a2n + 1 y+j où j est minimum dans J tel que x+j>a2n-1 •

La preuve s'achève en remarquant que (a2n + 1 — «uJneN est constante de

valeur y — x et donc ne tend pas vers l'infini avec n, ce qui contredit
le Théorème de Pôlya.

2.9. Nous mentionnons enfin un résultat qui souligne la portée de la

conjecture E-W sur N.
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En formalisant la négation de cette conjecture, on obtient la formule
suivante :

V/c 3x 3y > x Vi ^ k [SUPP(x-J-i) SUPP (3^ + Olli

est intéressant de constater que l'énoncé

\/k3x3y > xVi ^ k [SUPP(x + i) £ SUPPQ> + i)],
obtenu en remplaçant l'égalité par l'inclusion est facilement prouvable.

Proposition. Pour tout k > 0, pour tout x e N il existe y > x
tel que

SUPP(x-bi) — SUPP(3/ + 0 Pour tout i e {0, 1,..., k]

Preuve. On considère le plus grand entier premier p qui divise (x + k)

Un y convenable est alors donné par les conditions y > x et y x (mod n),

où n est le produit des entiers premiers q < p.

Remarque. La condition y > x est ici essentielle. En effet, M. Langevin
a montré que si pour tout x assez grand il existe 3; < x tel que
SUPP(x + 0 ^ SUPP(37 + 0 pour tout 0,1,2} alors la conjecture
d'Oesterlé-Masser est fausse (cf. [LM2]).

2.10. L'étude de la conjecture d'Erdös-Woods introduit naturellement la
notion suivante:

Définition. Soit A une partie de Z. On note =A la relation
d'équivalence sur Z définie comme suit :

x =A y si et seulement si SUPP(|x + i\) SUPP(|3; + ï|) pour tout ie A.
Notons [x]A la classe de x pour A. Le Fait suivant est immédiat.

Fait. 1°) Si A^B alors =A est moins fine que B.
La relation =q est kéquivalence grossière.

2 Si t e Z, x g Z, y g Z, A A t {x A t : x e A], — A { — x : x g A},
alors x — A+t y si et seulement si x At =Ay + t (i.e. [x]A+t ([x + t]A)-t) ;

x =-Ay si et seulement si - x =A - y (i.e. [x]_i4= -[-x]^.
3°) Si x e Z alors [x]{_x} [x]{_x+1} {x}.

Remarque. 1°) La conjecture d'Erdös-Woods exprime alors simplement
"u'iZ existe une constante k telle que la trace sur N de la relation

{o,i, ...,*} soit la relation d'égalité.
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2°) La conjecture d'Erdös-Woods équivaut aussi aux assertions suivantes:

(E-W)bis II existe une constante k telle que la trace sur N de la relation

{-k, s°it relation d'égalité.

(E-W)ter II existe une constante k telle que la trace sur N de la relation

~{-k,...,k} s°it la relation d'égalité.

Seules les implications (E-W)ter => (E-W) et (E-W)ter => (E-W)bis sont

non triviales.

La première résulte facilement de l'égalité [x]{0j 2k} — [x + Ki{-k,...,k} ~ k.

La seconde résulte de l'égalité 0} Lx~K\{-k,...,k) + k pour x ^ k,

et des égalités [x]{_2k 0} {x} pour x < k.

2.11. Le Corollaire 2.8 et le théorème de Stürmer 2.6 se traduisent par le

théorème suivant :

Théorème.

i) Si A est infini alors A est la relation d'égalité sur Z.

ii) Les classes d'équivalence de =A sont finies dès que A contient deux

entiers successifs de Z.

iii) Si A contient un segment {i,...,i + k} de Z,x=Ay et x # y alors

\x-y \> n > n p
peP, p\(x + i)...(x + i + k) p^k+l,peP

Preuve, i) Supposons A n N infini et x A y.

Soit m g N tel que x + ra>0etj; + m>0. Comme (A — m) n N est

aussi infini et que x + m A_m y + m, le Corollaire 2.8 assure l'égalité

x + m j; + met donc x y. Dans le cas où i n (Z\N) est infini on
considère -A et on conclut à l'aide du point 2 du Fait 2.10.

ii) Notons [x]A la classe de x pour A.
Le théorème de Stürmer montre que les traces de [x]{0,1} et [x]{_1>0}

sur N et Z\N sont finies. D'après le point 2 du Fait 2.10 on a [x]{0>1}

0}nN)), égalité qui montre le caractère fini des

classes de ={0,i}- On conclut la preuve de ii) à l'aide du point 2 du

Fait 2.10, en considérant les =A+t.
iii) Il suffit d'observer que si p divise x + j il divise aussi y -y j et donc

x — y.

2.12. Les points i) et iv) du Corollaire 2.4 se traduisent par le théorème

suivant :
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Théorème. Les restrictions à l'ensemble PP des entiers primaires des

relations {0> i,2}> ={-2,-1,0} et {-1,0,i) coïncident avec la relation

d'égalité. Les parties des PPk, k > 0, sont donc saturées pour les relations

d'équivalence =A telles que A contienne {0,1,2} ou bien {-2,-1,0}
ou bien { — 1,0,1}.

Preuve. Le point iv) du Corollaire 2.4 montre que la seule classe de

{0> 1} dont la trace sur PP n'est pas réduite à un seul élément est celle de 2

dont la trace est {2, 8}. Comme SUPP(2 + 2) {2} et SUPP(8 + 2) — {2, 5},

on voit que 2 ^{0, i, 2}
8.

Le point i) du Corollaire 2.5 montre que les seules classes de

dont les traces sur PP ne sont pas réduites à un seul élément sont les

classes {p, p2} où p est un entier premier de Mersenne, i.e. de la forme

p 2U - 1. Comme p2 + 1 (2U-1)2 + 1 2[2U(2U~1 -1)+ 1], on voit

que SUPP(p2 + l) # {2} tandis que SUPP(p+l) SUPP(2") - {2}, d'où

P ^{-1,0,1} P2- Comme p — 2 2" — 3 et p2 — 2 (2" —3) (2M +1) + 2, ces

entiers sont impairs et premiers entre eux, d'où p ^{-2, -1,0} P2-

Le Fait 2.10 donne le corollaire suivant de ce Théorème:

Corollaire. Soit n > 0. Sur l'ensemble PP + [0, n] {x + s : x e PP
et 0 ^ s < n} la relation

^ -1,0} coïncide avec la relation d'égalité.
Sur l'ensemble PP + [ — n, 0] {x + s : x g PP et — n ^ s ^ 0 et

x + s ^ 0} la relation — {o, 1,1} coïncide avec la relation d'égalité.
Sur l'ensemble PP + [ — n, ri\ la relation coïncide avec

la relation d'égalité.
Les parties des (PP + [0, n])k (resp. (PP + [ — n, 0])fc, resp. (PP + [ — n, ri])k)

où k > 0, sont donc saturées pour les relations d'équivalence A telles

que A contienne {- n - 1,..., 0} (resp. {0,..., n+1}, resp. {-n,..., 0, n}).

Remarques. 1°) Soit U l'ensemble

U — {— 56, - 26, - 20, - 14, - 11, - 10, - 6,

-5,-4, 0, 1, 4, 10, 16, 46}

On peut montrer (en utilisant le Théorème ZBV) que la restriction de

{o,i, m}
à l'ensemble PP des entiers primaires coïncide avec la relation

d'égalité si et seulement si m£U.
2 Les cas d exception du Théorème ZBV étant liés aux premiers de
Mersenne, il semble plus difficile de déterminer les m pour lesquels la
relation ={0 ^ m}5 restreinte à PP, coïncide avec l'égalité: ce sont les m
tels que, pour tout Mersenne p on ait SUPP(p + m) =£ SUPP (p2 + m).
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Outre la valeur m — 2 vue dans le Théorème précédent, on peut
montrer que c'est le cas des entiers m ± qa — 1, où q est un premier non
Mersenne, m $ { — p2 — p: p est Mersenne et p2 + p — 1 est premier} et

ra<£{ — 6, — 5} (à cause de p 3). Les exemples de tels m entre — 20

et 22 sont

- 20, - 18, - 17, - 14, - 12, - 10, -9,-8,-5,-4,-3, 1, 2, 4,

On peut aussi montrer qu'en revanche, outre 0 et — 1, les valeurs suivantes
de m ne conviennent pas :

— les entiers - 57, - 27, - 21, - 15, - 12, - 11, - 7, - 6, - 5, 3,

9, 15, 45 (à cause de p 3),

— les entiers - 2695, - 385, - 343, - 336, - 133, - 105, - 91, - 70,

— 63, - 56, - 55, - 43, - 35, - 31, - 28, - 25, - 21, - 13, 5, 7, 14,

35, 49, 140, 252, 287, 329, 2639 (à cause du Mersenne 7),

De façon générale, pour chaque Mersenne p, ne conviennent pas :

— les entiers m r(p — 1) — p, où SUPP [(r(r -h p)] ç SUPP(p—1), entiers

qui sont premiers avec p. En particulier, pour r — 1, — p — 1, —p + 1

on obtient — p2 — p + 1, — p2 + p — 1 et — 2p + 1).

— les entiers m p[r(p-1)-1] où SUPP [(r(r +1)] ç SUPP [p(p-1)].
En particulier, on peut prendre r — 9, — 4, — 3, — 2, 1, 2, 3, 8, p, — p,

p — 1, — p — 1, p2 — 1, — p2, d'où les valeurs suivantes de m:

- PIP2(P-1)+1], - P3, - P[P(P-1)+1], - P(9p-S), - p(4p-3),

- P(3p-2), -p(2p-l),- p(p +2),-pip+l), p, p2, 2), p(2p-3),

p{3p- 4), p(8p- 9), p{2p -3), plpip -1) +1], p2(p-2)+ 1, +1) l)2 -1]

2.13. Le symbole de Legendre qui indique qu'un entier x est résidu

Nous aurons besoin au § 7 du lemme suivant, combinaison du critère
d'Euler (qui caractérise les résidus quadratiques modulo les premiers) et du
Théorème de Dirichlet :

Lemme. Soit x un entier impair et p un diviseur premier de x.

6, 8, 10, 12, 15, 16, 18, 22.

etc.

quadratique modulo un entier premier p est noté

Il existe un entier premier q, qui ne divise pas x, tel que
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et ^ + 1 pour tout p' e SIJPP {x)\{p}

Par suite, — (— l)a, où a est l'exposant de p dans la décom-

w
position primaire de l'entier x.

Preuve. Soit 5 l'un des (p—1)/2 entiers qui ne sont pas résidus

quadratiques modulo l'entier p. Considérons le système de congruences suivant :

z 1 (mod 4), z 1 (mod x/pa), z s (mod p).

Le Théorème des restes chinois et le Théorème de Dirichlet montrent qu'il
existe un entier premier q > x solution de ce système.

Soit p' e SUPP (x)\{p}. Comme q > x, on a q ^ pf. D'autre part, puisque
q 1 (mod 4), on voit que l'entier (q — l)(p' —1)/4 est pair pour tout
p' e SUPP (x)\{p}. La loi de réciprocité quadratique assure donc

9-(?
La condition q s (mod p) conduit à ^ — 1 puisque s n'est

pas un résidu quadratique modulo p. Ainsi, on a — — 1. La condition

q 1 (mod p') nous assure que — j-M +1. Le caractère multi-
UJ \PJ

plicatif du symbole de Legendre montre alors que :

x\ /pa\ fx/pa\
— I -— 1 x —I (— l)a, ce qui achève la démonstration.

2.14. Nous aurons besoin au § 9 de caractériser l'égalité en termes de
division vue modulo un entier fixé. Si v > 0, nous notons Quot (u, v) et
Reste (;u, v) les quotient et reste de la division euclidienne de u par v.

Lemme. Soient x, y, a des entiers positifs ou nuls. Si a ^ 3 et
y - x ^ 2 alors il existe un entier premier p ^ a tel que pQuot (x, p)
# pQuot (y, p) (mod a).

Preuve. 1°) Des inégalités Quot (f, p) ^ t/p < Quot(f, p) + 1 on déduit

| Quot (y, p) - Quot (x, p) | - 1 < | y - x \/p

< | Quot (y, p) ~ Quot (x, p) | + 1
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On a donc

I Quot (y,p)-Quot (x,p)|- 1 s: Quot fly-x|, p)

< I Quot {y, p)- Quot I + 1,

d'où

Quot (|y — x|, p) | Quot (y, p) — Quot (x, p) | + s, où s g { — 1, 0}

2°) Nous traitons d'abord le cas où y — x ^ 8. Nous utiliserons le Théorème
de Tchebycheff sur l'existence d'un premier strictement compris entre x et

2x (ceci pour x ^ 2).

Si y — x ^ 8 alors il existe des premiers p et q tels que (y — x)/4 < q

< (y — x)/2 < r < y — x. On a donc 2 < (y — x)/q < 4, 1 < (y —x)/r < 2,

d'où Quot (y —x, q) 1 et Quot (y —x, r) 3.

Le point 1°) montre alors que

Quot(y, r) — Quot(x, r) 1 — s g {1, 2}

et Quot (y, q) — Quot (x, q) — 1 — s g {3, 4}

3°) On déduit de ce qui précède que

gQuot(x, q) — gQuot (y, q) g {3q, 4qj et rQuot(x, r) — rQuot (y, r) g {r, 2r}

Observons que {2, 3, 4, q, 2q, 3q, 4qj n {2, r, 2r} {2} car r et ^ sont
premiers et 2 < q < r. Comme a ^ 2, on voit que les deux cas suivants sont
exhaustifs.

1er cas : a {2, 3, 4, q, 2q, 3q, 4q].

L'entier a ne divise alors ni 3q ni 4q. On peut choisir pour p l'entier q

puisque q # a et gQuot {y, q) — gQuot (x, q) ^ 0 (mod a).

2e cas : a $ {2, r, 2r}

L'entier a ne divise alors ni r ni 2r. On peut choisir pour p l'entier r
puisque r ^ oc et rQuot (y, r) — rQuot (x, r) 0 (mod a).

Ceci achève la preuve dans l'hypothèse y — x ^ 8.

4°) Supposons maintenant y x + 2. Comme a ^ 3 on a 2Quot (y, 2)

— 2Quot (x, 2) 2 ^ 0 (mod a) et on peut prendre pour p l'entier 2.

5°) Supposons maintenant y x + i, i premier, i ^ 3 (ce qui réglera les cas

y — x 3, 5, 7). On a alors i Quot (y, i) — iQuot(x, i) i.

Si a i=- i alors on peut choisir pour p l'entier i.

Si a i alors 2Quot (y, 2) — 2Quot (x, 2) g {2 [i/2], 2([i/2] +1)}, ensemble
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qui ne contient pas i car i est un premier impair. Ainsi, on peut choisir

pour p l'entier 2.

6°) Supposons maintenant y x + 4. On a alors

2Quot (y, 2) — 2Quot (x, 2) — 4

Si oc ^ 4 alors on peut choisir pour p l'entier 2 (car on a toujours
oc / 2).

Si a 4 alors 3Quot (y, 3) — 3Quot (x, 3) e {3, 6}, ensemble qui ne contient

pas 4. On peut alors choisir pour p l'entier 3.

7°) Supposons enfin y x + 6. On a alors 2Quot (y, 2) — 2Quot (x, 2) 6

et 5Quot (y, 5) — 5Quot (x, 5) g {5, 10}. Comme a / 2, a ne peut pas diviser 6

et l'un d'entre 5 et 10. Ainsi, on peut donc prendre pour p l'une au moins
des valeurs 2 ou 5.

Le Lemme précédent permet d'établir le résultat suivant :

Proposition. Soient x, y, oc des entiers positifs ou nuls.

1°) Les conditions suivantes sont équivalentes :

i) x -= y.

ii)a (où oc ^ 3) Reste (x, p) Reste (y, p) (mod a) pour tout premier p =£ oc.

iii)a (où oc ^ 3) Quot (x, p) Quot (y, p) (mod oc) pour tout premier p ^ oc

et | y - x | / 1.

iv)a (où oc ^ 3) pQuot (x, p) pQuot (y, p) (mod oc) pour tout premier pi=- oc

et \y - x \ ^ 1.

Preuve de la Proposition.

1°) Le Lemme précédent se traduit immédiatement par l'implication iv)a => i).

2°) Observons que si p > z alors Reste (z, p) z. Ainsi, considérant un
premier p supérieur à a, x et y, on voit que ii)a implique x y (mod a).

3°) L'égalité x =*= pQuot (x, p) + Reste (x, p) montre immédiatement que si

x y (mod a) et Reste (x, p) Reste (y, p) (mod a)

al°rs pQuot (x, p) pQuot (y, p) (mod a).

C

4(

Par ailleurs, la condition x y (mod a) implique | ^ 1.

Ceci montre que ii)a => iv)rj..

4°) On conclut en remarquant que les implications i)=>ii)„, i)=>iii)a,
iii)0 => iv)a sont toutes triviales.
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Remarques. 1°) La restriction \ y — x \ =£ 1, triviale dans ii)a, ne peut
être omise dans iii)a. En fait, les conditions suivantes sont équivalentes:

A) y x + 1 et pQuot (x, p) pQuot (y, p) (mod a) pour tout premier
p a;

B) (x, y) (0, 1) ou bien a est premier et (x, y) (ak — 1, ak) pour un
k ^ 1.

2°) Le statut des assertions ii)2, iii)2 et iv)2 reste ouvert. On note cependant
qu'elles ne sont équivalentes à i) puisque

Quot (0, p) Quot (2, p) 0 pour tout premier p ^ 2

Reste (0, p) Reste (2, p) (mod 2) pour tout premier p

§ 3. Préliminaires de logique

3.1. Les langages formels logiques que nous considérerons sont ceux, dits
du premier ordre, qui ne comportent qu'un seul type de variables. Dans le

cadre arithmétique auquel nous nous intéressons, ces variables sont alors
destinées à varier sur l'ensemble N des seuls entiers naturels et non sur
les ensembles, relations ou fonctions sur N.

Ainsi, les formules ne permettent de traduire que les seules quantifications
sur les entiers et non sur les relations ou fonctions comme il est usuel et
tacite de le faire en mathématiques (en particulier dans les définitions par
induction).

Un langage logique du premier ordre L est caractérisé par une liste
de symboles spécifiques à chacun desquels est attaché un caractère relationnel
ou fonctionnel ainsi qu'une arité (i.e. le nombre des arguments). En pratique,
on désignera un langage L par la simple liste de ses symboles spécifiques
fonctionnels puis relationnels, omettant d'expliciter les arités (rendues
évidentes par le contexte).

A partir des variables on construit les termes de L par « composition »

des symboles fonctionnels. Par « application » des symboles relationnels aux

termes, on obtient les formules atomiques. Les opérations de négation,

conjonction, implication et quantifications appliquées aux formules atomiques
donnent enfin les formules de L.

3.2. Soit L » (/l5..., fm; R1,..., Rn) un langage du premier ordre.

Une structure Q {X ; cpx,..., cpm; px,p„> du langage L est la donnée
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