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CONSTRUCTION DE JONES 121

Cliffm l'algèbre de Clifford d'une telle forme sur Km. Le corollaire 1 montre

l'égalité Cliffm + 2 Cliffm 0 Mat2(K), connue sous le nom de périodicité des

algèbres de Clifford sur K. Le corollaire suivant en est une conséquence

immédiate.

Corollaire 2. Pour K algébriquement clos, on a Cliffm Mat2m/2(K)

lorsque m est pair, et Cliffm Mat2m-i/2(K) © Mat2m-i/2(K) lorsque m

est impair.

§ 2. Valeurs de l'indice

La preuve du lemme suivant résulte immédiatement de la définition de

l'indice donnée dans l'introduction.

Lemme 3. Soit 1 g N ç M une paire d'anneaux et soit l un entier tels

que chaque étage Mk de la tour associée par construction fondamentale
soit un Mk-module libre de rang 1. Alors [M : N~\ l.

Corollaire. Avec les notations du § 1 [Cliff(L): Cliff(VL)] 2.

Il peut être intéressant d'avoir un critère qui assure que les hypothèses du
lemme 3 sont vérifiées. Pour cela, on aura besoin de la notion de trace
markovienne. Si 1 e N ^ M est une paire d'algèbres semi-simples de

dimension finie sur un corps commutatif K, et si ß g Kx, une trace tr
sur M est markovienne de module ß si tr et sa restriction tr\N sont
fidèles, et s'il existe une trace Tr : L EndN(M) -> K telle que Tr (A,(x)) tr (x)
et ßTr(k(x)E) tr(x) pour tout x e M, où E est l'espérance conditionnelle
définie avant le lemme 2. On peut alors montrer que Tr est elle-même
markovienne de module ß pour la paire M c= L ([GHJ] 2.7.4), ce qui

00

permet de définir une trace sur u Mn et une suite d'espérances condition¬
ne»

nelles fidèles Ek: Mk -> Mk_1.
On vérifie aisément que la trace tr définie sur Cliff (L) au § 1 est

markovienne de module 2.

Lemme 4. Soient 1 g N ç M une paire d'algèbres de dimension finie
sur K, et E : M -> N une espérance conditionnelle fidèle. Si M est
libre de rang l comme N-module à droite, alors L - EndN(M) est libre
de rang l comme M-module à droite.



122 H. DHERTE

Preuve. Par la proposition 2.6.3 de [GHJ], l'application

4> : M (g)N M -+ L: x ® y i-> X(x)EX(y)

est un isomorphisme de M-modules à droite. Mais M <g)N M Nl 0^ M
M1 où le dernier isomorphisme est donné par l'application M-linéaire

à droite :

(ki,-, kz) ® yteN,xeM

Des lemmes 3 et 4, on déduit immédiatement que [M : M] 1 et

[M : K] dim (M) pour une K-algèbre unitale M de dimension finie.

Proposition 1. Soient 1 e iV ç M une paire d'algèbres de dimension

finie sur K. S'il existe une trace markovienne sur M, et si M est

libre de rang l comme N-module à droite, alors les hypothèses de lemme 3

sont satisfaites. En particulier, [M : IV] L

Preuve. Grâce à l'existence d'une trace markovienne sur M, chaque Mk
est munie d'une trace markovienne trfc et d'une espérance conditionnelle
Ek : Mk ->• Mfc-i, fidèle puisque M est de dimension finie.

En procédant par induction à partir du lemme 4, on voit que Mk est

libre de rang l sur Mfc_1 et donc Mk + 1 EndMk_1{Mk) est libre de rang l

sur Mk.

Un cas où la proposition 1 s'applique est celui des algèbres de groupes.
Soient G un groupe fini (d'ordre noté | G |), H un sous-groupe et K un
corps commutatif de caractéristique nulle. On rappelle que l'algèbre de groupe
K[G] est l'ensemble des combinaisons linéaires £ ag • g (ageK) où le produit

gsG

est donné par g1- g2 Qi^G). Comme K est de caractéristique
nulle, K[G] est semi-simple (voir [Se]).

L'inclusion 1 e K[ET] ^ K[G] fournit un exemple de paire d'algèbres

semi-simples de dimension finie. La fonctionnelle linéaire sur K[G] définie par

tr(£ ag-g)ax
geG

est une trace fidèle dont la restriction à K[H~] est fidèle. L'espérance
conditionnelle E : K[G] K [H] associée s'écrit

£(£ ag'9) E
geG geH
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Proposition 2. Si K est de caractéristique nulle,

[K[G]:K[tf]] [G: if].
Cette proposition est en fait bien connue ([J01], [J02]); c'est elle qui

justifie l'appellation d'indice. La preuve ci-dessous semble neuve :

Preuve de la proposition 2. Remarquons que K[G] est libre de rang
[G: H] comme K[if]-module à droite: en effet, le choix d'un système de

représentants pour les classes latérales gauches de H dans G fournit une
base de K[G] comme K[if]-module à droite. Montrons d'autre part que
tr est markovienne de module [G : Ü] sur K[G].

Pour cela, considérons EndK[H] (K[G]) comme une sous-algèbre de l'algèbre
EndK(K[G]) Mat|G|(K). Cette dernière algèbre est munie de la trace

S^TriS)
où Tr est la trace usuelle sur MatjG|(K).

Il est alors banal de vérifier que

l^jTrX{l) tr (1) 1

j-L-Tr%) tr (gr) 0 pour greG\{l}

LTrjEJ»l tr (1)

|G| I G|[G: H]
1

j-^jTr Hq)E tr (g) 0 pour g s G\{1}

Par linéarité, on en déduit la propriété annoncée. La proposition 1 s'applique
donc et permet de conclure.

Le résultat ci-dessus est encore valable si K est de caractéristique p,
pour autant que p ne divise pas | G |.


	§2. Valeurs de l'indice

