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118 H. DHERTE

Les résultats contenus dans cet article proviennent d'un travail de fin
d'études réalisé en 1987-1988 à l'Université Libre de Bruxelles sous la
direction de A. Valette.

§ 1. Algèbres de Clifford

Soient K un corps commutatif de caractéristique différente de deux,
F un K-espace vectoriel de dimension finie m et

<.,.>: F x F -> K

une forme bilinéaire symétrique non dégénérée. On note Cliff (F) l'algèbre
de Clifford de cette forme. Soit W un hyperplan de F tel que la
restriction < > \w est non dégénérée. L'objet de ce paragraphe est l'étude
de la paire d'algèbre Cliff (IL) ç= Cliff (F) (ces algèbres sont semi-simples
[Sch]).

Lemme 1. L'algèbre Cliff (F) est libre de rang 2 comme Cliff (W)~

module à droite.

Preuve. Soit emeV un vecteur tel que <em, em> ^ 0, em $ W et

em W. Montrons que {1, em} est une base de Cliff (F) comme Cliff {W)~

module à droite. En effet, si {e1,..., em_i} est une base orthogonale de W
(une telle base existe [Sch]) alors {el9..., em_l9 em} est une base orthogonale
de F et en utilisant les relations entre les générateurs de Cliff F, on peut
écrire de manière unique tout élément de M Cliff F sous la forme

Yj ^IeI + em X ^JeJ

(sommes sur / et J c= {1,..., m— 1}) où

eh eik si I {ix,..., ik} ci {1,..., m-1}

Posons N Cliff {W) a M Cliff (F) et L - End^M). Il résulte du
lemme que L Mat2(K) (g) N (nous notons Mafi(K) l'algèbre des matrices

l x l à coefficients dans K). Nous allons identifier L à une algèbre de

Clifford. Soit (el)1^l-^m une base de F, et (e/)/c{i,...,m} la base associée de

Cliff (F), comme dans la preuve du lemme 1. Soit tr:M-»K la forme
linéaire définie par tr (e0) 1 et tr(e7) 0 si 1^0.

On vérifie que tr est une trace (tr (xj/) tr (yx) pour tous x, y e M)
qui est fidèle (au sens que la forme bilinéaire (x, y) tr (xy) est non
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dégénérée); tr ne dépend pas du choix de la base (Oi«i<m et sa restriction

à N est encore fidèle. On peut donc définir la projection orthogonale

(sommes sur /,J c {1,..., m — 1}) relative à la forme (x, x') i— tr (xx'). On

montre que E possède les propriétés suivantes :

(voir [GHJ] 2.6.2). En d'autres termes, E est une espérance conditionnelle
de M sur N. On vérifie aussi qu'elle est fidèle : si x e M est tel que
E(xx') 0 pour tout x' e M, alors x 0. La troisième propriété ci-dessus

montre que E e L.

Lemme 2. Avec les notations précédentes, on pose a <em,em> et
F 2E — 1. Alors

(i) N1 MO (N),

(ii) MO FMO — aF dans L.

Preuve, (i) Si x, y e AT, on a tr (emxy) 0 et puisque emx e MON, il
vient MON E N1.

Pour montrer l'inclusion inverse, remarquons que comme dim AT 2m_1,
dim M 2m et M N © N\ on a dim N1 2m~\ De plus Mej: N
-> N1 est bijective puisque MO2 a ' O- On en tire Afx MON.
(ii) Soit y e N. Alors FX(em)y — X(em)y puisque F 2E — 1 et
N1 - MON - MOM-
Soit x e A1, alors EMO* MO* - MOEx.
Donc FMO ~ MOE et on a le résultat annoncé en multipliant à
gauche par MO-

tr (E(x)) tr (x), Vx g M

E(y) y Vy e N

E(xy) E(x)y Vx e M, y e N

E(yx) yE(x), Vx e M, y e N

Notons V © — a l'espace vectoriel V © K muni de la forme bilinéaire
symétrique ((x, X), (x\ À/)) ^ <x, x'> - ûU'
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Théorème. Soit L EndN(M) le résultat de la construction
fondamentale appliquée à N Cliff{W) ^ M Cliff(F). Alors L est isomorphe
à Cliff(F®-4

Preuve. Notons em + 1 un vecteur de base de F © — a correspondant au
second facteur.

Puisque dimL dimK(N(g)Mat2(K)) 2m + 1 dim (Cliff(F©-a)) il
suffit de montrer que Cliff (F©— a) se surjecte sur L. Montrons que
l'application

s'étend en un homomorphisme de Cliff (F©—a) sur L. Puisque F2 1,

en utilisant le lemme 2, on a a(em+l)2 — a. De plus, a(em + 1) anti-
commute avec les générateurs de Cliff (F) à nouveau par le lemme 2:

a(era+1)a(ej - a.(ejtx(em +1),et si w g W

u{em+1)X(w) X{em)FX(w)

X(em)X(w)F par ^-linéarité de F

— X(w)X(em)F puisque < w, em > =0
- a(w)a(eOT + 1).

Les relations qui définissent Cliff (F© —a) montrent alors que a s'étend
bien en un homomorphisme d'algèbres.

Il reste à montrer que cet homomorphisme est surjectif. Comme l'espérance

conditionnelle E est fidèle et que M est libre comme AT-module à

droite, on peut appliquer la proposition 2.6.3 de [GHJ], qui assure que L
est engendrée comme algèbre par X(M) et E; mais X(M) est clairement
dans l'image de notre homomorphisme, et E y est aussi car

Comme conséquence, on obtient le résultat suivant, démontré différemment
dans [Ka] Chap. III, 3.14 et 3.16:

Corollaire 1. Cliff(IF©u® -a) Cliff (IF) (g) Mat2(K).

Si K est algébriquement clos, deux formes bilinéaires symétriques non
dégénérées sur deux espaces de même dimension sont isomorphes. Notons

' w X(w)

a: emh^X(em) (weW)

em + 1t->X{eJF
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Cliffm l'algèbre de Clifford d'une telle forme sur Km. Le corollaire 1 montre

l'égalité Cliffm + 2 Cliffm 0 Mat2(K), connue sous le nom de périodicité des

algèbres de Clifford sur K. Le corollaire suivant en est une conséquence

immédiate.

Corollaire 2. Pour K algébriquement clos, on a Cliffm Mat2m/2(K)

lorsque m est pair, et Cliffm Mat2m-i/2(K) © Mat2m-i/2(K) lorsque m

est impair.

§ 2. Valeurs de l'indice

La preuve du lemme suivant résulte immédiatement de la définition de

l'indice donnée dans l'introduction.

Lemme 3. Soit 1 g N ç M une paire d'anneaux et soit l un entier tels

que chaque étage Mk de la tour associée par construction fondamentale
soit un Mk-module libre de rang 1. Alors [M : N~\ l.

Corollaire. Avec les notations du § 1 [Cliff(L): Cliff(VL)] 2.

Il peut être intéressant d'avoir un critère qui assure que les hypothèses du
lemme 3 sont vérifiées. Pour cela, on aura besoin de la notion de trace
markovienne. Si 1 e N ^ M est une paire d'algèbres semi-simples de

dimension finie sur un corps commutatif K, et si ß g Kx, une trace tr
sur M est markovienne de module ß si tr et sa restriction tr\N sont
fidèles, et s'il existe une trace Tr : L EndN(M) -> K telle que Tr (A,(x)) tr (x)
et ßTr(k(x)E) tr(x) pour tout x e M, où E est l'espérance conditionnelle
définie avant le lemme 2. On peut alors montrer que Tr est elle-même
markovienne de module ß pour la paire M c= L ([GHJ] 2.7.4), ce qui

00

permet de définir une trace sur u Mn et une suite d'espérances condition¬
ne»

nelles fidèles Ek: Mk -> Mk_1.
On vérifie aisément que la trace tr définie sur Cliff (L) au § 1 est

markovienne de module 2.

Lemme 4. Soient 1 g N ç M une paire d'algèbres de dimension finie
sur K, et E : M -> N une espérance conditionnelle fidèle. Si M est
libre de rang l comme N-module à droite, alors L - EndN(M) est libre
de rang l comme M-module à droite.
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