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118 H. DHERTE

Les resultats contenus dans cet article proviennent d’un travail de fin
d’études réalis€ en 1987-1988 a I’Université Libre de Bruxelles sous la
direction de A. Valette.

§ 1. ALGEBRES DE CLIFFORD

Soient K un corps commutatif de caractéristique différente de deux,
V' un K-espace vectoriel de dimension finie m et

<.,>:VxV-K

une forme bilinéaire symétrique non dégénérée. On note CIliff (V) I'algébre
de Clifford de cette forme. Soit W un hypefplan de V tel que la res-
triction < .. > | est non dégénérée. L’objet de ce paragraphe est I’étude
de la paire d’algebre CIliff (W) < Cliff (V) (ces algébres sont semi-simples
[ Sch]).

LemME 1. L’algebre CIlLiff(V) est libre de rang 2 comme Cliff (W)-
module a droite.

Preuve. Soit e,eV un vecteur tel que <e,,e,> # 0,e,¢ W et
ey = W. Montrons que {1, e,} est une base de Cliff (V) comme CIiff (W)-
module & droite. En effet, si {e;,..,e,_,} est une base orthogonale de W
(une telle base existe [Sch]) alors {e,, .., €,_1, €,} est une base orthogonale
de V et en utilisant les relations entre les générateurs de Cliff V, on peut
écrire de maniere unique tout €élément de M = Cliff V sous la forme

Y her + e, ) ey

(sommes sur I et J < {1, .., m—1}) ou

e =¢€ ...e si I ={ij,., i} c{l,.,m-1}. O

1 Ik

Posons N = Cliff(W) =« M = Cliff (V) et L = Endy(M). Il résulte du
lemme que L = Mat,(K) ® N (nous notons Mat,;(K) I'algebre des matrices
[ x | a coefficients dans K). Nous allons identifier L a une algébre de
Clifford. Soit (e;);<;<m une base de V, et (ef);(1,.. m la base associce de
Cliff (V), comme dans la preuve du lemme 1. Soit tr: M — K la forme
linéaire définie par tr(ey) = lettr(e) = 0sil # Q.

On vérifie que tr est une trace (tr(xy) = tr(yx) pour tous x,ye€ M)
qui est fidéle (au sens que la forme bilinéaire (x, y) — tr(xy) est non
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dégénérée); tr ne dépend pas du choix de la base (¢;);<i<m €t 52 restriction
a N est encore fidéle. On peut donc définir la projection orthogonale

E M - N
Shier + ey Y Asey > Y e

(sommes sur I, J < {1,..,m — 1}) relative a la forme (x, x’) — tr (xx). On
montre que E posséde les propriétés suivantes:

tr (E(x)) = tr(x), Vxe M
E(y) =y, VyeN
E(xy) = E(x)y, Y xeM,ye N
E(yx) = yE(x), Vxe M,ye N

(voir [GHIJ] 2.6.2). En d’autres termes, E est une espérance conditionnelle
de M sur N. On vérifie aussi qu’elle est fidéle: si xe M est tel que
E(xx) = 0 pour tout x' € M, alors x = 0. La troisiéme propriété ci-dessus
montre que E € L.

LEMME 2. Avec les notations précédentes, on pose a = <e,,e,> et
F =2E — 1. Alors

D) N* = Men) (N),

(i) Me,) FMe,) = — aF dans L.

Preuve. (i) Si x,ye N, on a tr(e,xy) = 0 et puisque e,x € Ae,)N, il
vient Me, )N = N*.

Pour montrer I'inclusion inverse, remarquons que comme dim N = 2™~ 1,
dmM = 2" et M = N@ N-, on a dimN* = 2""! De plus Me,): N
— N+ est bijective puisque Me,)* = a-1,. On en tire N* = Ae,,)N.

(i) Soit yeN. Alors FAe,)y = — Me,)y puisque F = 2E — 1 et
N* = Me,)N = — Me,)Fy.

Soit x € N*, alors FMe,)x = Me,)x = — Me,)Fx.

Donc FAe,) = — Me,)F et on a le résultat annoncé en multipliant a

gauche par Me,). [

Notons V' @ — a l'espace vectoriel V @ K muni de la forme bilinéaire
symétrique ((x, A), (x', M) > <x, x' > — al).



120 H. DHERTE

THEOREME. Soit L = Endy(M) le résultat de la construction fonda-
mentale appliquée a N = Cliff (W) = M = CIliff (V). Alors L est isomorphe
a CuLff(Vée —a).

Preuve. Notons e, ,; un vecteur de base de V' @ — a correspondant au
second facteur.

Puisque dim L = dimg(N®@Mat,(K)) = 2"*! = dim (Clff (VB —a)) il
suffit de montrer que Cliff(V@ —a) se surjecte sur -L. Montrons que
Papplication

W A(w)
o: e, — Me,) (weW)

em+1 > Men)F

s'étend en un homomorphisme de Cliff (V'@ —a) sur L. Puisque F? = 1,
en utilisant le lemme 2, on a afe,.,)> = — a. De plus, afe,.,) anti-
commute avec les générateurs de CIliff (V) a nouveau par le lemme 2:

OC(em+ 1)0((8,”) = - O‘(em)oc(em+ 1),
etsiwe W
A€+ )MW) = Men) FMw)
= Me )Mw)F  par N-linéarité de F
= — Mw)Me,)F puisque <w,e,> = 0
= — a(wale, ;).
Les relations qui définissent Cliff(V@® —a) montrent alors que o s’étend
bien en un homomorphisme d’algebres.
Il reste a montrer que cet homomorphisme est surjectif. Comme I’espé-
rance conditionnelle E est fidele et que M est libre comme N-module a
droite, on peut appliquer la proposition 2.6.3 de [GHJ], qui assure que L

est engendrée comme algebre par MM) et E; mais MM) est clairement
dans I'image de notre homomorphisme, et E y est aussi car

1

E = (1 + 1Oc(em)oc(em-i— 1)) : ]
2 a

Comme conséquence, on obtient le résultat suivant, démontré différemment
dans [Ka] Chap. ITI, 3.14 et 3.16:
CorOLLAIRE 1. Cliff (Wda® —a) = Chff (W) ® Mat,(K).

Si K est algébriquement clos, deux formes bilinéaires symétriques non
dégénérées sur deux espaces de méme dimension sont isomorphes. Notons
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Cliff,, I'algébre de Clifford d’une telle forme sur K™. Le corollaire 1 montre
Pégalité Cliff,, , = Cliff,, ® Mat,(K), connue sous le nom de périodicité des
algébres de Clifford sur K. Le corollaire suivant en est une conséquence

immeédiate.

COROLLAIRE 2. Pour K algébriguement clos, on a Cliff,, = Mat,m2(K)
lorsque m est pair, et CIliff,, = Mat,m-1/2(K) @ Mat,m-12(K) lorsque m
est impair.

§ 2. VALEURS DE L’INDICE

La preuve du lemme suivant résulte immédiatement de la définition de
'indice donnée dans 'introduction.

LEMME 3. Soit 1€ N © M une paire d’anneaux et soit | un entier tels
que chaque étage M, de la tour associée par construction fondamentale
soit un M,-module libre de rang 1. Alors [M:N] = I[.

COROLLAIRE. Avec les notations du § 1 [Clhff (V): Clift (W)] = 2.

Il peut étre intéressant d’avoir un critére qui assure que les hypotheses du
lemme 3 sont vérifiées. Pour cela, on aura besoin de la notion de trace
markovienne. Si 1e N € M est une paire d’algébres semi-simples de
dimension finie sur un corps commutatif K, et si peK* une trace tr
sur M est markovienne de module P si tr et sa restriction tr\, sont
fideles, et §il existe une trace Tr: L = Endy(M) — K telle que Tr (A(x)) = tr (x)
et PTr(M(x)E) = tr(x) pour tout x € M, ou E est I’espérance conditionnelle
définie avant le lemme 2. On peut alors montrer que Tr est elle-méme
markovienne de module B pour la paire M < L ([GHJ] 2.7.4), ce qui

0

permet de definir une trace sur U M, et une suite d’espérances condition-
n=0

nelles fideles E,: M, - M, _,.
On vérifie aisement que la trace tr définie sur CLff(V) au §1 est
markovienne de module 2.

LEMME 4. Soient 1eN < M une paire dalgébres de dimension finie
sur K, et E:M — N une espérance conditionnelle fidéle. Si M est
libre de rang | comme N-module d droite, alors L = Endy(M) est libre
de rang | comme M-module a droite.
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