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LA CONSTRUCTION FONDAMENTALE DE V. JONES

ET LA PÉRIODICITÉ DES ALGÈBRES DE CLIFFORD

par Hélène Dherte

§ 0. Introduction

Soit 1 g A ^ M une paire d'anneaux à unité. On note EndN(M) l'anneau
des endomorphismes de M vu comme A-module à droite. Pour tout
x e M, la multiplication à gauche X(x) par x dans M appartient à

Endn(M) ; on identifie ci-dessous M à son image par X : M -> EndN(M).
Cette construction fondamentale fournit ainsi une paire leM Ç EndN(M)

à partir de 1 e A ç M. En itérant, on obtient une tour :

1 g M0 A S M1 M S e Mk ç Mfc+1 ç
dont l'intérêt a été mis en évidence par V. Jones, d'abord lorsque M et A
sont des algèbres de von Neumann qui sont des facteurs de type II x, ensuite
dans d'autres cas et en particulier lorsque M et N sont des algèbres
semi-simples de dimension finie sur un corps parfait (voir [J01], [J02], [GHJ]).

Un invariant numérique fort intéressant introduit par Jones et lié à la
construction fondamentale est Yindice de A dans M, qui est par définition

[M : A] - lim sup rk (Mk/M0)1/k
§- 00

où rk (Mk/M0) est le rang de Mk sur M0, c'est-à-dire le plus petit nombre
de générateurs de Mk comme M0-module à droite.

Ce travail est consacré à l'étude d'exemples où M est libre comme
A-module à droite. Plus précisément, au § 1, nous montrons comment la
construction fondamentale permet de retrouver certains résultats bien connus
sur les algèbres de Clifford. Au §2, nous calculons des valeurs d'indices,
et nous donnons en particulier une preuve courte de l'égalité

[K[G]:K[H]] [G: A]
où G est un groupe fini, K un corps de caractéristique nulle, K[G]
l'algèbre de G sur K et A un sous-groupe de G (voir [J02]).
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Les résultats contenus dans cet article proviennent d'un travail de fin
d'études réalisé en 1987-1988 à l'Université Libre de Bruxelles sous la
direction de A. Valette.

§ 1. Algèbres de Clifford

Soient K un corps commutatif de caractéristique différente de deux,
F un K-espace vectoriel de dimension finie m et

<.,.>: F x F -> K

une forme bilinéaire symétrique non dégénérée. On note Cliff (F) l'algèbre
de Clifford de cette forme. Soit W un hyperplan de F tel que la
restriction < > \w est non dégénérée. L'objet de ce paragraphe est l'étude
de la paire d'algèbre Cliff (IL) ç= Cliff (F) (ces algèbres sont semi-simples
[Sch]).

Lemme 1. L'algèbre Cliff (F) est libre de rang 2 comme Cliff (W)~

module à droite.

Preuve. Soit emeV un vecteur tel que <em, em> ^ 0, em $ W et

em W. Montrons que {1, em} est une base de Cliff (F) comme Cliff {W)~

module à droite. En effet, si {e1,..., em_i} est une base orthogonale de W
(une telle base existe [Sch]) alors {el9..., em_l9 em} est une base orthogonale
de F et en utilisant les relations entre les générateurs de Cliff F, on peut
écrire de manière unique tout élément de M Cliff F sous la forme

Yj ^IeI + em X ^JeJ

(sommes sur / et J c= {1,..., m— 1}) où

eh eik si I {ix,..., ik} ci {1,..., m-1}

Posons N Cliff {W) a M Cliff (F) et L - End^M). Il résulte du
lemme que L Mat2(K) (g) N (nous notons Mafi(K) l'algèbre des matrices

l x l à coefficients dans K). Nous allons identifier L à une algèbre de

Clifford. Soit (el)1^l-^m une base de F, et (e/)/c{i,...,m} la base associée de

Cliff (F), comme dans la preuve du lemme 1. Soit tr:M-»K la forme
linéaire définie par tr (e0) 1 et tr(e7) 0 si 1^0.

On vérifie que tr est une trace (tr (xj/) tr (yx) pour tous x, y e M)
qui est fidèle (au sens que la forme bilinéaire (x, y) tr (xy) est non
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