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Fix (A,) is a sphere. It cannot be S? since the representation of A4, in
SO(3) is irreducible, so it is S*. The only closed 1-dimensional submanifold of
St is S* itself, so Fix(G) = S*.

b. As in subcase a., a linear change in coordinates allows us to assume
that h is actually i, and as before if G,e G the proposition is proved
applying 4.1.

If it is not the case, let o correspond to the cycle (12345)e A5, P
to (123) and y to (345). We observe that B and y generate A5 and so:

1. Fix(4s) = Fix(B) n Fix (y),
2. Fix(4;) < Fix (o).

We claim that Fix (o) is S°. According to Smith’s theorem it is enough
to prove that the representation of o around x, has an isolated fixed point,
ie. is the sum of two irreducible complex ones.

If not by Lemma 3.3 (i(x);i(x)) would be conjugate in SO(3) x SO(3)
to an element on the diagonal. From the explicit description of i and i
(see the end of section 7.1 of [22]), it follows that they send all the five
cycles to non conjugate elements in SO(3), so this is impossible, and
Fix (o) = S°.

As for B and v, their images under (i, i) are conjugate to elements on
the diagonal, by 3.3 and 3.4 their fixed point sets have two-dimensional
components, and so by Smith’s theorem they are copies of S?.

So Fix(G) is the intersection of a couple of S?s and is contained in
Fix () which is S° 1If this set is empty or equal to S° the proposition
follows. If it were a single point, it would be a transverse intersection, by
local linearity, but it is not possible since a homology S* does not contain
any two cycles with intersection number odd. This ends the proof.

5. LOCALLY LINEAR REPRESENTATION

Let’s now consider the case of G acting on a homology S* with two
fixed points, P, and P, .

THEOREM 5.1. The unoriented representations of G around P, and
P, are linearly equivalent. *)

Proof. It will suffice to show that the characters associated to the
representations around the P;s agree on every cyclic subgroup C, of G.

) See the note in the introduction.
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Observe that by Lemma 3.4 and Smith’s theorem the fixed point set of an
element of G different from the identity is either S° or S2.
Let g generate C,, we distinguish three cases:

1. Fix(g") = {Py; P,} for every r = O(mod k),
2. Fix(g) = S?,
3. Fix(g) = {Py; P,} but Fix(g") = S* for some g" # id.

Case 1. The hypothesis means that the action is semifree and the claim
follows from the work of Atiyah and Bott, see [1] and [14].

Case 2. The action of C, on the normal bundle of the fixed S?
defines an element N of K (S?). Since C, acts trivially on S? the two
inclusions P; — S% are obviously C, homotopic so that the diagram :

K, (Py)
[N]eKe () ™ Ry
a9 /2 Rl

commutes. This means that the representation of C, in the normal com-
ponent to S? are conjugate, the tangential representations are of course
both the identity, so the statement is proved.

Case 3. We can assume, by [8], that the action on S? = Fix(g") is
linear. S* has zero intersection number in X so its normal bundle N can
be identified to S* x R?, and we fix a trivialization. Denote a point of
S* — {P,; P,} by (x,t) with xeS' and re(0,1). Let C, be the space
{d: ST > SO(2) | deg & = 0}, it is an abelian group by pointwise multiplication
and a C, module with structure given by:

(hd) (x) = d(hx),he C, and xeS'c §?
acted on by the obvious induced action.
By [5], chapter VI, prop. 11.1, the action is given by a 6, such that
1. 0,eZYC,; Co) and depends continuously on ¢t € [0, 1].
2. 0,(h)(x) is constant on xeS! and equal to the representation of
hat P, fori = 0; 1.

A change in the trivialization adds to each 6, a coboundary so there is
a well defined continuous family 0,: [0, 1] — HY(C,; C,).

A straightforward calculation shows that HY(C,; C,) = H*(C,; Z) = C,.
Since 0, is continuous it has to be constant, so 6, = 6, and by 2. the



HOMOLOGY FOUR SPHERES 115

two normal representations are equal. In the topological case, by the results
of Cappel and Shaneson topological equivalence of matrices in dimension 4
implies linear equivalence, so the statement of Theorem 5.1 makes sense
also for a group of homeomorphism.

The proof given can be adapted to this more general case provided
that the followings are true:

1. the topological Atiyah-Singer signature formula holds,
2. alocally flat $? in X has a normal bundle,
3. the argument in case 3 works with Homeo (S!) instead of SO(2).

Assertion 1 is proved, in the case of the semi-free action, in [21],
page 188; assertion 2 follows from the work of Freedman, see [10];
assertion 3 is proved using the retraction Homeo (S') into SO(2) given by
the Poincaré number, see [7].

APPENDIX
LEMMA. The extensions:
0 - C, - 125 — As - 0
! }
0 - C, » Ay x A5y - As X As - 0
! § H

0 - C, - SO@d — SO0(3)x S0B) — 0

are not split, h and K can be any nontrivial representations of As
and f s either (Idx{I}) or ({I}xId).

Proof. Standard theory of group extensions and cohomology (see [4])
allows us to reduce to the:

| PROPOSITION. Any non trivial homomorphism A 5 SO(3) induces an
isomorphism Z/2 = H*BSO(3); Z/2) - H¥BAs; Z/2) = Z/2.

Proof of the Proposition. 1If the corresponding extension is split, then
Z/2 x As = S° but A5 = 60 so there exists a Z/2 As so Z2 x Z]2
would act freely on S3, which cannot happen.
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