

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 35 (1989)
Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: THE FIXED POINT SET OF A FINITE GROUP ACTION ON A HOMOLOGY FOUR SPHERE
Autor: Demichelis, Stefano
Kapitel: 1. Introduction
DOI: <https://doi.org/10.5169/seals-57368>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 19.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

THE FIXED POINT SET OF A FINITE GROUP ACTION ON A HOMOLOGY FOUR SPHERE

by Stefano DEMICHELIS

1. INTRODUCTION

It is a classical result of P. A. Smith that a finite p -group acting on a finite dimensional complex with the Z/p homology of a sphere S^k has fixed point set Z/p homologically equivalent to some S^k with $k < n$.

This theorem cannot, in general, be extended to groups of more general type, even if one assumes much more restrictive hypotheses such as a smooth action on a manifold homeomorphic or diffeomorphic to a sphere.

In particular, for every odd $n \geq 5$, it is possible to use Brieskorn varieties to produce finite group actions with fixed point set not a homology sphere. Even if the fixed point set is a sphere it can be embedded in a non standard way; for an elementary discussion of this phenomenon see [18] and [15]. For other “strange” actions of groups on higher dimensional spheres and disks the reader is referred to [16].

In low dimensions it is harder to construct such examples, and it may be conjectured that finite group actions on spheres are equivalent or somewhat “close” to linear ones.

On S^2 the situation is the best possible, indeed according to [6], [13] and [8], every finite group of homeomorphisms of S^2 is topologically conjugate to a linear action.

On S^3 it is necessary to assume local linearity, otherwise pathologies such as horned spheres may arise, see [2].

A deep and difficult theorem, conjectured by Smith and proved by combining results of Thurston, Meeks and Yau and Bass, states that every smooth cyclic action on S^3 is conjugate to the linear one; a detailed account can be found in [15].

The first example of a smooth cyclic action on S^4 with fixed point set a knotted S^2 is in [12], for more information see [9] and [17], these actions are obviously not linear.

The aim of this paper is to prove that any locally linear orientation preserving action of a finite group on an homology four sphere has fixed point set homeomorphic to a sphere. In particular there are no one fixed point actions. Besides, if the fixed point set is S^0 , it is proved that the local representations are conjugate.¹⁾ For a large class of actions, the proof is an elementary application of Smith's theory, using the fact that in dimensions ≤ 2 homology spheres are topological spheres. In one remaining case, an action of the icosahedral group, a slightly more complicated argument is needed. This type of argument cannot be extended to dimension 3, as the example in [11] proves.

The motivation for this work came from the paper of Peter Braam and Gordana Matic [3] on group actions and instantons spaces. They prove that a smooth orientation preserving action of a group on a homology sphere whose fundamental group has no nontrivial representations in $SU(2)$ admits an even number of isolated fixed points and that they come in pair such that the representations around them are conjugate. Also, Furuta proved that there are no actions with one fixed point.

The author wishes to thank Professor William Browder for his patience in listening to him and for his advice, and also Gordana Matic for having explained her work to him.

2. STATEMENT OF THE RESULT

In the following " R -homology S^n " will mean a compact topological manifold whose homology with coefficients in the ring R is the same as that of S^n . (Of course in dimensions 0, 1, 2 such a manifold is homeomorphic to a sphere.) To unify some notation, the empty set will be considered a sphere of dimension -1 , all actions will be assumed effective.

THEOREM 2.1. *Let G be a finite group acting locally linearly and preserving the orientation on a \mathbb{Z} -homology 4-sphere Σ . Then the fixed point set of G is homeomorphic to a sphere; in particular it never consists of one point.*

Local linearity is assumed to avoid pathologies, every smooth action is locally linear (see e.g. [5]).

¹⁾ The author has been informed that this has been proved independently by S. Cappell.