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THE FIXED POINT SET OF A FINITE GROUP ACTION
ON A HOMOLOGY FOUR SPHERE

by Stefano DEMICHELIS

1. INTRODUCTION

It is a classical result of P. A. Smith that a finite p-group acting on a
finite dimensional complex with the Z/p homology of a sphere S* has fixed
point set Z/p homologically equivalent to some S* with k < n.

This theorem cannot, in general, be extended to groups of more general
type, even if one assumes much more restrictive hypotheses such as a smooth
action on a manifold homeomorphic or difftomorphic to a sphere.

In particular, for every odd n > 5, it is possible to use Brieskorn
varieties to produce finite group actions with fixed point set not a homology
sphere. Even if the fixed point set is a sphere it can be embedded in a non
standard way; for an elementary discussion of this phenomenon see [18]
and [15]. For other “strange” actions of groups on higher dimensional
spheres and disks the reader is referred to [16].

In low dimensions it is harder to construct such examples, and it may be
conjectured that finite group actions on spheres are equivalent or somewhat
“close” to linear ones.

On S? the situation is the best possible, indeed according to [6], [13]
and [8], every finite group of homeomorphisms of S$* is topologically
conjugate to a linear action.

On S° it is necessary to assume local linearity, otherwise pathologies
such as horned spheres may arise, see [2].

A deep and difficult theorem, conjectured by Smith and proved by
combining results of Thurston, Meeks and Yau and Bass, states that every
smooth cyclic action on S* is conjugate to the linear one; a detailed
account can be found in [15].

The first example of a smooth cyclic action on S* with fixed point set

a knotted S? is in [12], for more information see [9] and [17], these
actions are obviously not linear.
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The aim of this paper is to prove that any locally linear orientation
preserving action of a finite group on an homology four sphere has fixed
point set homeomorphic to a sphere. In particular there are no one fixed
point actions. Besides, if the fixed point set is S°, it is proved that the local
representations are conjugate.’) For a large class of actions, the proof is an
elementary application of Smith’s theory, using the fact that in dimensions
< 2 homology spheres are topological spheres. In one remaining case, an
action of the icosahedral group, a slightly more complicated argument is
needed. This type of argument cannot be extended to dimension 3, as the
example in [11] proves.

The motivation for this work came from the paper of Peter Braam and
Gordana Matic [3] on group actions and instantons spaces. They prove
that a smooth orientation preserving action of a group on a homology
sphere whose fundamental group has no nontrivial representations in SU(2)
admits an even number of isolated fixed points and that they come in pair
such that the representations around them are conjugate. Also, Furuta proved
that there are no actions with one fixed point.

The author wishes to thank Professor William Browder for his patience
in listening to him and for his advice, and also Gordana Matic for having
explained her work to him.

2. STATEMENT OF THE RESULT

In the following “R-homology S"” will mean a compact topological
manifold whose homology with coefficients in the ring R is the same as
that of S". (Of course in dimensions O, 1,2 such a manifold is homeo-
morphic to a sphere.) To unify some notation, the empty set will be
considered a sphere of dimension —1, all actions will be assumed effective.

THEOREM 2.1. Let G be a finite group acting locally linearly and pre-
serving the orientation on a Z-homology 4-sphere X. Then the fixed point
set of G is homeomorphic to a sphere; in particular it never consists of
one point.

Local linearity is assumed to avoid pathologies, every smooth action is
locally linear (see e.g. [5]).

1) The author has been informed that this has been proved independently by
S. Cappell.

\
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Observation 2.2. There is a non-locally linear action of a finite group on a
homology four sphere with exactly one fixed point.

Proof. Take the one fixed point action of 45 on the Poincaré’s sphere
constructed in [11], remove the fixed point and multiply the remaining
homology disk by the unit interval to obtain a four homology disk on
which the product action has no fixed points. One can extend this action
to the one point compactification to obtain a homology S* on which As
acts fixing only the point at infinity.

The main tool in the proof of Theorem 2.1. will be the classical result
due to Smith (see [19]);

TueoreM 2.3. Let Z/p, p a prime, act on a Z[p homology S",
then the fixed point set is a Z/p homology S*; if p 1is odd, n—k
IS even.

3. SOLVABLE GROUPS

In the four dimensional case it is easy to deduce from Theorem 2.3.
the Corollary:

COROLLARY 3.1. Let G be a solvable group acting locally linearly and
orientation preserving on X, then the fixed point set is a sphere.

Proof of the Corollary. Let {1} = Hy, <« H, « H, < G be a compo-
sition series such that every H;,, is normal in H; and the quotients are
cyclic of prime order p;. By Smith theorem X = Fix (H;) is a Z/p homology
sphere, the action is not trivial so X cannot be the whole X; nor can it be
3-dimensional, for otherwise some element of H, would interchange the two
components of X — X and so reverse the orientation. Hence X has to be of
dimension less than or equal to 2 and so a topological sphere.

Fori > 1, Fix (H;_,) is invariant under H; and the latter’s action factorizes
through H;/H,_,, so Fix(H;) = Fix(H,_,/H;| Fix (H;_,)); applying repeat-
edly the argument above and using the fact that now all the spaces
involved are spheres, the statement follows.

If x,e X9 the fixed set of G on X, the assumption of local linearity
gives a representation G > SO(4), faithful since G acts effectively, this allows

us to think of G as a finite subgroup of SO(4) and to study it we look
at the central extension:
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3.2 0 — C, —» SO(4) - SO(3) x SO(3) - 0

where m = (n,,m_) is given by the representation onto the self-dual and
anti-self-dual forms in R*, and C, is {+ I} the center of SO(4).

Observe that mw~1'(A), where A is the diagonal in SO(3) x SO(Q3), is
the image of the “suspension” map from O(3) into SO(4):

detM O
M -
0 M
We state now two elementary facts which will become useful in the
following;

LemMma 3.3. If ae€SO0@) has at least one eigenvalue = 1 then its
image m(a) = (oy,o_) in SO3) x SO(3) is conjugate to an element of
A, ie, v ia,v = a_ for some veSO3).

LemMMA 34. The fixed space of an element of SO(4) always has even
dimension.

Consider the diagram

SO(4) kit SO3) x SO(3)

U W U
3.5 G-C,=G 5 G, =« G, x G,

Jju

G

where the G;s (i=1,2) are the images of the projections =n; of G,
into the two SO(3)s; j is either the identity or the inclusion of a subgroup
of index 2 in G = n~}(n(G)) in the latter case moj appear as G;. Luckily,
finite subgroups of SO(3) are well known (see e.g. [20]): they can be divided
into four types:

i. cyclic groups C,,,

i1. dihedral groups D,,,,
iii. the tetrahedral group,
iv. the octahedral group,
v. the icosahedral group.

All the first four types consist of solvable groups. It is easy to show
that the class of solvable groups is closed under the operations of taking
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products, subgroups and central extensions, so G falls in the hypothesis of
Corollary 3.1. in all cases, except the one in which at least one G; is the
icosahedral group. This is isomorphic to A5, the alternating group on five
letters and this identification will be fixed from now on.

4. NON SOLVABLE GROUPS
We will prove Theorem 2.1 case by case. We start with the Lemma:

LemMa 4.1. If G contains C,, then Fix(G) is S°.

Proof. Fix(G) = Fix(G/C,Fix(C,)). Fix(C,) is a homology sphere by
Smith’s theorem and is zero dimensional since around the chosen fixed
point the non trivial element of C, acts like the matrix —I, which has an
isolated fixed point. The action of G/C, on S° has to be trivial since the
fixed point set is required not to be empty.

By renumbering the factors and charging basis if necessary, we may
assume G, equal to A5, with G, > SO(3) the standard representation of
As. Then G, is a subgroup of G; x A5 mapping onto both factors and
to study 1t in more detail we look at the kernel of the second projection:
Gy = As. This subgroup consists of elements of the form (k, I) with
k e G,; we denote it by K, .

For convenience we distinguish three cases:

Case 1. K, is a non-trivial subgroup of SO(3), not isomorphic to 45,
Case 2. K, is isomorphic to A5,

Case 3. K, is trivial.

Proof in case 1. The surjection G — A5 has non trivial kernel
K = j Yn"YK,)) = G, this group is solvable since K, is, ® is a central
extension and j is an injection. By Corollary 3.1, Fix(K) is a sphere of
dimension 2 and Fix(G) is the fixed point set of an A, acting on it

so it is easy to see that the only actions admitting some fixed points are
the trivial ones.

Proof in case 2. Since A5 is not properly contained in any finite
subgroup of SO(3), K, has to be equal to the whole G, .

So Gy = As x A5 = SO(3) x SO(3) and contains K, = A x {1}, it
follows that G, is the whole 45 x A5. Observe that the two inclusions of
As in SO(3) do not necessarily agree.
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We claim that G in the diagram 3.5 must contain C,, for if not
jom would be an isomorphism G — A5 x A and its inverse would split the
extension

0——>C2—>6—>A5—>A5—>0

This is not possible (see the appendix). Now apply Lemma 4.1. to end
the proof.

Proof in case 3. If K, is trivial the projection G, = A5 is an iso-
morphism and the composition ¢ = w; o, l: A5 — G, is a map onto,
with graph G,. The homomorphic images of A5 are only the trivial group
and A itself, since 45 is simple.

If G, = ¢(4s) is trivial, G, is equal to {I} x A5. As in case 2 the
extension

0->C,—> G- {I} x A;

is not split, so G contains C, and Fix(G) = S by 4.1. If G; = §(4s) is
isomorphic to A5, G, = G; x G, is a copy of A5 too, mapped into SO(3)
x SO(3) according to d(x) = (h(x); i(x)), where h(x) is some irreducible
representation and i(x) is the standard one specified before. The arguments
in [22] can be used to prove that there are exactly two equivalence classes
of representations of A5 into SO(3).

So there are two subcases:

a. hisx — u"ti(x)u, with u e SO(3),

b. h is conjugate to the composition i: A5 > A 4 SO(3) and o is con-
jugation by the cycle (i,)Ss on As.

a. If the coordinate system around the fixed point chosen at the beginning
is linearly changed according to some ue SO(4), the representation
p: G - SO(4) becomes up(x)u ~*. '

If mu) = (u;1); i is left unchanged and h is replaced by i. So G, is
contained in the diagonal and G € G € Im (0(3)).

Recall that when G contains C,, Fix (G) = S° by Lemma 4.1.

Lemma 4.2. If G # C,,Fix(G) = S.

Proof. G is isomorphic to A5 and has to be contained in Im(SO(3))
so its representation has a one dimensional fixed space, which implies
Fix (G) 1-dimensional at x,. Now A5 contains A, (named tetrahedral group
when sitting in SO(3)), so Fix(4;) e Fix(A4,), A, is solvable and hence
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Fix (A,) is a sphere. It cannot be S? since the representation of A4, in
SO(3) is irreducible, so it is S*. The only closed 1-dimensional submanifold of
St is S* itself, so Fix(G) = S*.

b. As in subcase a., a linear change in coordinates allows us to assume
that h is actually i, and as before if G,e G the proposition is proved
applying 4.1.

If it is not the case, let o correspond to the cycle (12345)e A5, P
to (123) and y to (345). We observe that B and y generate A5 and so:

1. Fix(4s) = Fix(B) n Fix (y),
2. Fix(4;) < Fix (o).

We claim that Fix (o) is S°. According to Smith’s theorem it is enough
to prove that the representation of o around x, has an isolated fixed point,
ie. is the sum of two irreducible complex ones.

If not by Lemma 3.3 (i(x);i(x)) would be conjugate in SO(3) x SO(3)
to an element on the diagonal. From the explicit description of i and i
(see the end of section 7.1 of [22]), it follows that they send all the five
cycles to non conjugate elements in SO(3), so this is impossible, and
Fix (o) = S°.

As for B and v, their images under (i, i) are conjugate to elements on
the diagonal, by 3.3 and 3.4 their fixed point sets have two-dimensional
components, and so by Smith’s theorem they are copies of S?.

So Fix(G) is the intersection of a couple of S?s and is contained in
Fix () which is S° 1If this set is empty or equal to S° the proposition
follows. If it were a single point, it would be a transverse intersection, by
local linearity, but it is not possible since a homology S* does not contain
any two cycles with intersection number odd. This ends the proof.

5. LOCALLY LINEAR REPRESENTATION

Let’s now consider the case of G acting on a homology S* with two
fixed points, P, and P, .

THEOREM 5.1. The unoriented representations of G around P, and
P, are linearly equivalent. *)

Proof. It will suffice to show that the characters associated to the
representations around the P;s agree on every cyclic subgroup C, of G.

) See the note in the introduction.
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Observe that by Lemma 3.4 and Smith’s theorem the fixed point set of an
element of G different from the identity is either S° or S2.
Let g generate C,, we distinguish three cases:

1. Fix(g") = {Py; P,} for every r = O(mod k),
2. Fix(g) = S?,
3. Fix(g) = {Py; P,} but Fix(g") = S* for some g" # id.

Case 1. The hypothesis means that the action is semifree and the claim
follows from the work of Atiyah and Bott, see [1] and [14].

Case 2. The action of C, on the normal bundle of the fixed S?
defines an element N of K (S?). Since C, acts trivially on S? the two
inclusions P; — S% are obviously C, homotopic so that the diagram :

K, (Py)
[N]eKe () ™ Ry
a9 /2 Rl

commutes. This means that the representation of C, in the normal com-
ponent to S? are conjugate, the tangential representations are of course
both the identity, so the statement is proved.

Case 3. We can assume, by [8], that the action on S? = Fix(g") is
linear. S* has zero intersection number in X so its normal bundle N can
be identified to S* x R?, and we fix a trivialization. Denote a point of
S* — {P,; P,} by (x,t) with xeS' and re(0,1). Let C, be the space
{d: ST > SO(2) | deg & = 0}, it is an abelian group by pointwise multiplication
and a C, module with structure given by:

(hd) (x) = d(hx),he C, and xeS'c §?
acted on by the obvious induced action.
By [5], chapter VI, prop. 11.1, the action is given by a 6, such that
1. 0,eZYC,; Co) and depends continuously on ¢t € [0, 1].
2. 0,(h)(x) is constant on xeS! and equal to the representation of
hat P, fori = 0; 1.

A change in the trivialization adds to each 6, a coboundary so there is
a well defined continuous family 0,: [0, 1] — HY(C,; C,).

A straightforward calculation shows that HY(C,; C,) = H*(C,; Z) = C,.
Since 0, is continuous it has to be constant, so 6, = 6, and by 2. the
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two normal representations are equal. In the topological case, by the results
of Cappel and Shaneson topological equivalence of matrices in dimension 4
implies linear equivalence, so the statement of Theorem 5.1 makes sense
also for a group of homeomorphism.

The proof given can be adapted to this more general case provided
that the followings are true:

1. the topological Atiyah-Singer signature formula holds,
2. alocally flat $? in X has a normal bundle,
3. the argument in case 3 works with Homeo (S!) instead of SO(2).

Assertion 1 is proved, in the case of the semi-free action, in [21],
page 188; assertion 2 follows from the work of Freedman, see [10];
assertion 3 is proved using the retraction Homeo (S') into SO(2) given by
the Poincaré number, see [7].

APPENDIX
LEMMA. The extensions:
0 - C, - 125 — As - 0
! }
0 - C, » Ay x A5y - As X As - 0
! § H

0 - C, - SO@d — SO0(3)x S0B) — 0

are not split, h and K can be any nontrivial representations of As
and f s either (Idx{I}) or ({I}xId).

Proof. Standard theory of group extensions and cohomology (see [4])
allows us to reduce to the:

| PROPOSITION. Any non trivial homomorphism A 5 SO(3) induces an
isomorphism Z/2 = H*BSO(3); Z/2) - H¥BAs; Z/2) = Z/2.

Proof of the Proposition. 1If the corresponding extension is split, then
Z/2 x As = S° but A5 = 60 so there exists a Z/2 As so Z2 x Z]2
would act freely on S3, which cannot happen.



116

[1]
[2]
(3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]

[12]
[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]

S. DEMICHELIS

REFERENCES

ATiyaH, M.F. and R. Borr. A Lefschetz fixed point formula for elliptic
complexes. II. Applications. Ann. of Math. 88 (1968), 451-491.

BING, R. A homeomorphism between the sphere and the sum of two solid
horned spheres. Ann. of Math. 56 (1952), 354-362.

BraaMm, P.J. and G. MarTic. Instantons and group actions of four-manifolds.
In preparation.

BrownN, K. S. Cohomology of groups. Springer-Verlag, New York, Heidelberg,
Berlin, 1982.

BRrReDON, G. E. Introduction to compact transformation groups. Academic Press,
New York, 1972.

BrOUWER, L. E.J. Uber die periodischen Transformationen der Kugel. Math.
Ann. 80 (1919), 262-280.

CornrELD, 1. P, S.V. Fomin and Ya. G. SiNaL Ergodic Theory. Springer-
Verlag, New York, Heidelberg, Berlin, 1982.

EILENBERG, S. Sur les transformations périodiques de la surface de la sphére.
Fund. Math. 22 (1934), 28-41.

FinTUSHEL, R. Locally smooth circle actions on homotopy 4-spheres. Duke
Math. J. 43 (1976), 63-87.

FrReEeDMAN, M. The disk theorem for four-dimensional manifolds. Proceedings of
the international congress of mathematicians, Warsawa, 1983.

Froyp, E.E. and R. W. RICHARDSON. An action of a finite group on an
n-cell without stationary points. Bull. of the Am. Math. Society 65 (1959),
73-76.

GrirreN, C. H. The generalized Smith conjecture. Am. J. of Math. 88 (1966),
187-198.

KERekJARTO, B. Uber die periodischen Transformationen der Kreisscheibe und
der Kugelflache. Math. Ann. 80 (1919), 36-38.

MILNOR, J. Whitehead torsion. Bull. Amer. Math. Soc. 72 (1966), 358-426.

MoORrGAN, J. W. and H. Bass (eds). The Smith Conjecture. Academic Press,
Orlando, Fla., 1984.

OLIVER, R. Fixed-point sets of group actions on finite acyclic complexes.
Comment. Math. Helvetici 50 (1975), 155-177.

Pao, P.S. Nonlinear circle actions on the 4-sphere and twisting spun knots.
Topology 17 (1978), 291-296.

ROLFSEN, D. Knots and links. Publish or Perish Press, 1976.

SMiTH, P. A. Transformations of finite period. Ann. of Math. 39 (1938), 127-164.

THRELFALL, W. and H. SeirerT. Topologische Untersuchung der Diskontinuitats-
bereiche endlicher Bewegungsgruppen des dreidimensionalen spharischen
Raumes. Mathematische Annalen 104 (1931), 1-70.

WarL, C.T.C. Surgery on compact manifolds. Academic Press, New York,
London, 1970.

WoLr, J. A. Spaces of constant curvature. Mc Graw Hill New York, 1967.

(Regu le 20 juillet 1988)

Stefano Demichelis

Department of Mathematics
Princeton University
Princeton, NJ08544 (USA)



	THE FIXED POINT SET OF A FINITE GROUP ACTION ON A HOMOLOGY FOUR SPHERE
	1. Introduction
	2. STATEMENT OF THE RESULT
	3. Solvable groups
	4. Non solvable groups
	5. LOCALLY LINEAR REPRESENTATION
	Appendix
	...


