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104 F. SIGRIST

donner des informations sur les symétries d’'une molécule lorsque I'on en
connait le nombre de différents isomeres.

La situation de départ est celle d’un groupe G agissant sur un ensemble
a m €léments, qui eux-mémes peuvent étre coloriés a I'aide de n couleurs.
On demande de déterminer le nombre de colorations de E, inéquivalentes
par laction du groupe G. La solution donnée par Polya s’obtient en
appliquant convenablement le théoréme de Burnside:

THEOREME 5.1. Le nombre de colorations de lensemble E a4 n cou-
leurs, inéquivalentes par Paction de G, est Z(G;n,n, ..., n).

Démonstration. En agissant sur E, le groupe G agit également sur
I’ensemble des colorations de E a n couleurs, et c’est le nombre d’orbites de
cette action qu’il faut déterminer. Par le théoréme de Burnside, on est
ramené a compter les colorations de E qui sont fixes par un élément
donné g de G. Mais une coloration n’est invariante par g que si elle est
constante sur les cycles de g. Il y a donc n/t*/2%%Jm colorations fixes
par g, et par conséquent Z(G; n, n, ..., n) orbites. C.Q.F.D.

L’application la plus connue est celle du comptage des colliers différents
pouvant étre formés avec des perles de deux couleurs. La suite des premicres
valeurs obtenues, en fonction du nombre total de perles, est 2, 3, 4, 6,
8, 13, 18, 30, 46, 78, 126, 224 .. Elle sert souvent d’exemple résistant au
traitement par les différences finies.

Une version plus générale, dans laquelle un deuxiéme groupe agit sur
I’ensemble des couleurs, a été donnée par de Bruijn [2]. On en trouve une
application intéressante dans [5]: le comptage des differents thémes dodéca-
phoniques cycliques, inéquivalents par transposition musicale.

6. CLASSIFICATION DES COLORATIONS

Si le groupe G est trivial, il est bien connu que les »™ colorations de
I’ensemble E a l'aide de n couleurs peuvent étre triées selon les couleurs
utilisées. Il suffit de developper (x;+x,+..+x,)", puisque le coefficient
multinomial (m;i,,i,, .. i,) est le nombre de colorations nécessitant i; fois
la couleur x,, i, fois la couleur x,,.., et i, fois la couleur x,. On dira
que de telles colorations ont le poids (iy, iy, ..., i,).

Dans le cas général, on peut appliquer un raisonnement analogue a
chaque terme de la formule de Burnside. On doit alors tenir compte du fait
que les colorations sont constantes sur les cycles des éléments du groupe G.
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Si ge G est de type (ji,Jjs, .. Jjm) il faut développer, en lieu et place de
(x;+Xx,+...+x,)", le polyndbme

(X4 XgF et x,)00 e 24X+ x2)2e L (XTHXT 4 X))

On obtient ainsi une version plus précise du théoréme 5.1, qui remplace le
nombre de colorations par leur fonction génératrice:

THEOREME 6.1. Le nombre de colorations de poids (iy, iy, .., I,), inéqui-
valentes par Paction de G, est le coefficient de x%{ x2 ..x, dans

Z(G; (g + Xy 4+ x,), 3+ X34 xD), oy (XTHXT+ .4 X))

Pour obtenir le théoréme dans une version encore plus générale, il reste
a introduire une fonction génératrice des couleurs x(x;, x5, ..., X,) quelconque,
a la place de (x;+x,+..+x,). De fagon pertinente, Polya donne a une
telle fonction le nom d’inventaire des figures. Le raisonnement avec la formule
de Burnside est le méme que précédemment, et il vient:

THEOREME 6.2. Si l'on colorie les éléments de E d laide de linventaire
des figures x(xy,.., X,), les colorations inéquivalentes par laction de G
sur E ont pour fonction génératrice

Z(G (X1 5 Xy ey X), XX T, X3, ey X7); e XX Ty X, oy XT)

A ce degré de généralité, le résultat est d’une souplesse d’utilisation
inattendue, comme en témoigne 'exemple qui suit [6], repris en détail dans
le livre de Polya-Tarjan-Woods [7].

On se propose de compter les alcools aliphatiques, qui sont des molécules
d’hydrocarbures dans lesquelles la configuration des atomes de carbone
est celle d’un arbre. La racine de I'arbre est le radical OH, et la valence

du carbone exige que les ramifications soient de degré inférieur ou égal a 3.
La figure 1 en donne un exemple.

&

OH =

wmase () ey

Figure | Figure 2
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Il s’agit donc de trouver a(n), le nombre d’arbres différents a n nceuds,
avec toutes les ramifications de degré 1, 2 ou 3. On convient que a(0) = 1,
et on note A(x) = Za(n)x" la fonction génératrice. On remarque alors qu’a
tout arbre on peut en faire correspondre trois autres, qui sont les descendants
de Patome de carbone jouxtant la racine OH (voir Figure 2). Mais I'opé-
ration inverse, consistant a reconstruire un arbre a partir de trois autres,
exige que 'on identifie les triplets d’arbres qui ne different que d’'une permu-
tation. On en déduit que la solution du probléme est donnée par I'indicateur
des cycles du groupe X,, avec comme inventaire des figures la fonction A(x)
elle-méme. Le théoréme 6.2 devient ainsi, si 'on tient compte du nceud
supplémentaire :

i (A(x)—1) = Z(Z3; A(x), A(x?), A(x?)) = é (A(x)? + 3A(x)A(x?) + 2A(x%)) .

Cette équation fonctionnelle pour la fonction A(x) permet d’en trouver
inductivement le développement en série, et les premiers termes sont

Ax) = 1 + x + x% 4+ 2x3 + 4x* + 8x°> + 17x° + ...
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