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104 F. SIGRIST

donner des informations sur les symétries d'une molécule lorsque l'on en

connaît le nombre de différents isomères.

La situation de départ est celle d'un groupe G agissant sur un ensemble
à m éléments, qui eux-mêmes peuvent être coloriés à l'aide de n couleurs.
On demande de déterminer le nombre de colorations de E, inéquivalentes

par l'action du groupe G. La solution donnée par Pôlya s'obtient en

appliquant convenablement le théorème de Burnside :

Théorème 5.1. Le nombre de colorations de l'ensemble E à n
couleurs, inéquivalentes par l'action de G, est Z(G ; n, n,..., n).

Démonstration. En agissant sur E, le groupe G agit également sur
l'ensemble des colorations de E à n couleurs, et c'est le nombre d'orbites de

cette action qu'il faut déterminer. Par le théorème de Burnside, on est

ramené à compter les colorations de E qui sont fixes par un élément
donné g de G. Mais une coloration n'est invariante par g que si elle est

constante sur les cycles de g. Il y a donc nJl+j2 + "'+jm colorations fixes

par g, et par conséquent Z(G ; n, n,..., n) orbites. C.Q.F.D.

L'application la plus connue est celle du comptage des colliers différents

pouvant être formés avec des perles de deux couleurs. La suite des premières
valeurs obtenues, en fonction du nombre total de perles, est 2, 3, 4, 6,

8, 13, 18, 30, 46, 78, 126, 224 Elle sert souvent d'exemple résistant au
traitement par les différences finies.

Une version plus générale, dans laquelle un deuxième groupe agit sur
l'ensemble des couleurs, a été donnée par de Brüijn [2]. On en trouve une

application intéressante dans [5] : le comptage des différents thèmes dodéca-

phoniques cycliques, inéquivalents par transposition musicale.

6. Classification des colorations

Si le groupe G est trivial, il est bien connu que les nm colorations de

l'ensemble E à l'aide de n couleurs peuvent être triées selon les couleurs
utilisées. Il suffit de développer (xx+ x2 + + x„)m, puisque le coefficient
multinomial (m; il, i2,in) est le nombre de colorations nécessitant i1 fois

la couleur x1, i2 fois la couleur x2,..., et in fois la couleur xn. On dira

que de telles colorations ont le poids (i1, i2,..., in).

Dans le cas général, on peut appliquer un raisonnement analogue à

chaque terme de la formule de Burnside. On doit alors tenir compte du fait

que les colorations sont constantes sur les cycles des éléments du groupe G.
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Si geG est de type ÜiJu-JmX ü faut développer, en lieu et place de

(x1 + x2 + ..- + xn)m, le polynôme

(x1 + X2 + + X„)jl * (x \ + X 2 + + Xn)^2 * ••• * T d" X 2 + + Xn j-7

On obtient ainsi une version plus précise du théorème 5.1, qui remplace le

nombre de colorations par leur fonction génératrice :

Théorème 6.1. Le nombre de colorations de poids (il, i2, -, i„),
inéquivalentes par l'action de G, est le coefficient de x'f x2 xlnn dans

Z(G;(x! + x2 +... + x„), (xj+xl + .-. +x*)(x?+ x5 + + x)).
Pour obtenir le théorème dans une version encore plus générale, il reste

à introduire une fonction génératrice des couleurs %(x±, x2,..., xn) quelconque,
à la place de (x: +x2 + + x„). De façon pertinente, Pôlya donne à une
telle fonction le nom d'inventaire des figures. Le raisonnement avec la formule
de Burnside est le même que précédemment, et il vient :

Théorème 6.2. Si l'on colorie les éléments de E à l'aide de l'inventaire
des figures %{xljt..., x„), les colorations inéquivalentes par l'action de G

sur E ont pour fonction génératrice

Z(G-,x(xl,x2,xn\x(xlxixi),x(xT>2> •••> X»)) •

A ce degré de généralité, le résultat est d'une souplesse d'utilisation
inattendue, comme en témoigne l'exemple qui suit [6], repris en détail dans
le livre de Pôlya-Tarjan-Woods [7].

On se propose de compter les alcools aliphatiques, qui sont des molécules
d'hydrocarbures dans lesquelles la configuration des atomes de carbone
est celle d'un arbre. La racine de l'arbre est le radical OH, et la valence
du carbone exige que les ramifications soient de degré inférieur ou égal à 3.

La figure 1 en donne un exemple.
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Il s'agit donc de trouver a(n\ le nombre d'arbres différents à n nœuds,

avec toutes les ramifications de degré 1, 2 ou 3. On convient que a(0) 1,

et on note A(x) Ha(ri)xn la fonction génératrice. On remarque alors qu'à
tout arbre on peut en faire correspondre trois autres, qui sont les descendants
de l'atome de carbone jouxtant la racine OH (voir Figure 2). Mais
l'opération inverse, consistant à reconstruire un arbre à partir de trois autres,

exige que l'on identifie les triplets d'arbres qui ne diffèrent que d'une permutation.

On en déduit que la solution du problème est donnée par l'indicateur
des cycles du groupe Z3, avec comme inventaire des figures la fonction A(x)
elle-même. Le théorème 6.2 devient ainsi, si l'on tient compte du nœud

supplémentaire :

— (A(x)— 1) Z(X3 ; A(x), A(x2), ri(x3)) - (Z(x)3 + 3Z(x)ri.(x2) + 2Z(x3)).

Cette équation fonctionnelle pour la fonction A(x) permet d'en trouver
inductivement le développement en série, et les premiers termes sont

A(x) 1 -f- x + x2 -f- 2x3 -H 4x4 + 8x3 H- 17x^ H-
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