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102 F. SIGRIST

LEMME 3.3. Si G estrésoluble, S en est l'unique sous-groupe d’ordre p.

Preuve. G contient alors un sous-groupe dérivé G®, non trivial et com-
mutatif. Celui-ci contient donc un unique sous-groupe S’ d’ordre p, par
le corollaire du lemme 3.1. De ce fait, S’ est normal dans G, et unique
puisque d’indice premier a p. Par conséquent § = S

Remarque. Voici le passage correspondant de la démonstration de Galois
dans le mémoire cité (le groupe G de ce texte est bien siir S):

..donc le groupe qui précéde immédiatement le groupe G ne devra contenir
que des substitutions telles que x,, X, 4+, €t ne contiendra pas, par conséquent,
d’autre substitution circulaire que celle du groupe G.

On raisonnera sur ce groupe comme sur le précédent, et il s’ensuivra que le
premier groupe dans I'ordre des décompositions, c’est-a-dire le groupe ACTUEL
de I’équation ne peut contenir que des substitutions de la forme x;, X4 4p-

LEMME 34. Si S est normal dans G, G est résoluble.

Preuve. En numérotant convenablement les racines, on peut supposer
que S est le sous-groupe T des translations du lemme 3.2. G est alors
contenu dans le groupe A des affinités. C.Q.F.D.

Le chainon manquant de la démonstration proprement dite est alors
fourni par le théoréme de Burnside. Grace aux lemmes ci-dessus, il ne
reste en effet qu'a invoquer la proposition 2.3: Si G agit de fagon affine
sur ’ensemble des racines, il ne peut contenir que p — 1 éléments d’ordre p,
puisque ceux-ci sont sans point fixe. Le sous-groupe S est donc unique, et
la preuve est complete.

Les équations de degré premier, solubles par radicaux, sont obligatoi-
rement métacycliques par le corollaire du lemme 3.2. Dans la deuxieme
édition du livre de van der Waerden [8], le § 60 leur est consacré sous ce
titre, reprenant l'argumentation de Galois. Dommage qu’il ne figure plus
dans les éditions ultérieures.

4. 1 INDICATEUR DES CYCLES

Une permutation de m objets est dite de type (j;,j,, - jm) S1 52 décompo-
sition en cycles disjoints comprend j, points fixes, j, transpositions, ..,
et j,, m-cycles. On parle de méme du type de I'élément g € G, lorsque G
agit sur un ensemble E a m objets. La fonction génératrice des types,
introduite par Polya [6], s’appelle indicateur des cycles:
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Z(Gizy,2y, 0 2y) = — Zzitz .. zIm.
|G|
En I'absence d’une référence a un ensemble sur lequel G agit, on convient
de considérer la représentation réguliére du groupe G. Il faut remarquer
que méme dans ce cas, 'indicateur des cycles ne caractérise pas le groupe:
prendre par exemple deux groupes non isomorphes d’ordre p> et d’exposant p
premier impair [ 1, chapitre VIII].
L’indicateur des cycles pour le groupe des permutations de m objets X,
est connu sous forme implicite: c’est le coefficient de t™ dans le dévelop-
pement en série de la fonction exp (X(z;t/i)). En particulier:

1
2(X33521,25,23) = 6(2?4‘32122‘*‘223)-

Dans de nombreux problémes d’énumération (frises, colliers, etc.), cest
Paction du groupe cyclique C,, et du groupe diédral D, sur les m sommets
d’un polygone régulier qui intervient. Les indicateurs des cycles sont dans
ces cas donnés par:

1
Z(Cm;zla Z7 5 weny Zm) = a dlZ: (P(d) ijn/d
Z(D2 C ez Zz) = i Z (p(d)ZZS/d +_S_ZZZs—1 -I-EZS
ot 4s d[2s ‘ 2 "t72 2772
1

Y od)z@stoe 4 52,25

Z(Dysi1:215 22, e Zag11) =
4s + 2 g135+1

Le théoréme de Burnside peut s’exprimer a l'aide de Iindicateur des
cycles, puisque le nombre de points fixes d’un élément g est egal a j,.
Pour trouver le nombre d’orbites, il suffit en effet de calculer la dérivée
partielle 0Z/0z; au point z; = z, = .. =z, = 1.

5. LE THEOREME D’ENUMERATION DE POLYA

Dans larticle [6] intitulé « Kombinatorische Anzahlbestimmungen fiir
Gruppen, Graphen und chemische Verbindungen », Polya décrit une méthode
de dénombrement pour les configurations inéquivalentes par l'action d’un
groupe de symétries. Congu au départ pour compter les isomeéres d’une
substance chimique de géométrie donnée, le procédé permet également de
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