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100 F. SIGRIST

ProposITION 2.1. X | Fix(g) | = tN, ou, de fagon équivalente, Zia; = tZa,.

Démonstration. Considérons I’ensemble P des paires (g, x) telles que
gx = x. P contient d’une part X | Fix(g) |, et d’autre part X | G, | = Zo;n;
= tN paires, d’ou I'assertion.

Pour la deuxieme partie de ’énoncé de Burnside, on suppose que G agit
transitivement, et que s est le nombre (commun) d’orbites des stabilisateurs.

PROPOSITION 2.2. Zi’q; = sZa;.

Démonstration. Choisissons un stabilisateur G', et notons a; le nombre
d’¢léments de G’ ayant exactement i points fixes. Alors ma} = ia;, car un
¢lément de G avec i points fixes appartient a i stabilisateurs. La propo-
sition 2.1, appliquée a G’, donne Xia; = s| G’ | = sN/m, d’ou Zi’a; = sN, .
comme annonce.

On dira que le groupe G agit de facon affine si tout élément de G
ayant deux points fixes est I'identité. Avec cette définition, la proposition 2.1
permet d’énoncer :

ProrosiTioN 2.3. On suppose que G  agit transitivement sur un
ensemble E d m éléments. Alors laction de G est affine si et seulement
si G contient exactement m — 1 éléments sans point fixe.

Démonstration. Avec les notations ci-dessus, l'action est affine si et

seulement st a, = a3 = ... = a,_; = 0. Comme a, = 1, la proposition 2.1
pour t = O devient ay = a, + 2a; + 3a4 + .. + m—2a,,—, + m — 1.
C.QF.D

3. UN THEOREME DE GALOIS

« Le Mémoire ci-joint est extrait d’un ouvrage que j’ai eu ’honneur de présenter
a I’Académie il y a un an. Cet ouvrage n’ayant pas été compris, les propositions
qu’il renferme ayant été révoquées en doute, j’ai di me contenter de donner,
sous forme synthétique, les principes généraux et une seule application de ma
théorie. Je supplie mes juges de lire du moins avec attention ce peu de pages.
On trouvera ici une CONDITION générale a laquelle SATISFAIT TOUTE
EQUATION SOLUBLE PAR RADICAUX, et qui réciproquement assure leur
résolubilité. On en fait I'application seulement aux équations dont le degré est
un nombre premier. Voici le théoréeme donné par notre Analyse:

Pour qu’une équation de degré premier, qui n’a pas de diviseurs commensurables,
soit soluble par radicaux, il FAUT et il SUFFIT que toutes les racines soient
des fonctions rationnelles de deux quelconques d’entre elles... »

[4, Mémoire sur les conditions de résolubilité des équations par radicaux, extrait
de la préface du 16 janvier 1831].
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Ce résultat concernant les équations a coefficients rationnels, et dont la
démonstration se déroule entiérement dans le contexte, et le vocabulaire,
de la théorie des groupes, illustre de fagon convaincante la nouveauté et
la force des idées introduites par Galois.

A une équation de degré premier p, irréductible, correspond un groupe
transitif G de permutations des p racines. G est donc d’ordre divisible par p,
et contient par conséquent un sous-groupe S cyclique d’ordre p (Galois cite
Cauchy, qui venait de démontrer cette propriété). Les éléments non triviaux
de S sont des p-cycles, et n’ont donc aucun point fixe. l

Si les racines peuvent sexprimer rationnellement a partir de deux
quelconques d’entre elles, cela équivaut au fait que le groupe G agit de fagon
affine sur 'ensemble des racines. Le théoreme de Galois prend alors la
forme: G est résoluble si et seulement s’il agit de facon affine sur ensemble
des racines.

Pour la démonstration, il est commode de prouver préalablement les
lemmes qui suivent, qui ont d’ailleurs un intérét en eux-mémes.

LemME 3.1.  Soit G agissant transitivement, et N un sous-groupe normal
de G. Alors toutes les orbites de N ont la méme cardinalité.

Preuve. Soient Nx et Ny deux orbites. Par transitivité de l'action de G,
y = gx. Comme Ng = gN, l'action de g fournit une bijection de Nx sur Ny.
C.Q.F.D.

COROLLAIRE. Si | E| = p premier, tout sous-groupe normal non trivial
de G est dordre divisible par p, puisqu’il agit transitivement.

LEMME 3.2.  Soit T le sous-groupe du groupe symétrique X, engendré
par la translation (i) = i + 1 (mod m). Alors le normalisateur de T dans
X, est le groupe des affinités A = {o| (i) = ai + b (mod m), (a,m) = 1}.
Le groupe A est résoluble, et son action est (évidemment) affine.

Preuve. Soit y e A. Alors yty~! = 1% avec (a, m) = 1. Posons b = v(0)
= 1°(0); alors

Y(i) = y7'(0) = vty 1(b) = (b)) = 1*%0) = ai + b (mod m).
Pour la résolubilit¢ de A, il suffit de remarquer que le quotient A/T est

le groupe commutatif des inversibles modulo m.

COROLLAIRE. Si - m = p premier, le groupe A est métacyclique,
dordre p(p—1).
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LEMME 3.3. Si G estrésoluble, S en est l'unique sous-groupe d’ordre p.

Preuve. G contient alors un sous-groupe dérivé G®, non trivial et com-
mutatif. Celui-ci contient donc un unique sous-groupe S’ d’ordre p, par
le corollaire du lemme 3.1. De ce fait, S’ est normal dans G, et unique
puisque d’indice premier a p. Par conséquent § = S

Remarque. Voici le passage correspondant de la démonstration de Galois
dans le mémoire cité (le groupe G de ce texte est bien siir S):

..donc le groupe qui précéde immédiatement le groupe G ne devra contenir
que des substitutions telles que x,, X, 4+, €t ne contiendra pas, par conséquent,
d’autre substitution circulaire que celle du groupe G.

On raisonnera sur ce groupe comme sur le précédent, et il s’ensuivra que le
premier groupe dans I'ordre des décompositions, c’est-a-dire le groupe ACTUEL
de I’équation ne peut contenir que des substitutions de la forme x;, X4 4p-

LEMME 34. Si S est normal dans G, G est résoluble.

Preuve. En numérotant convenablement les racines, on peut supposer
que S est le sous-groupe T des translations du lemme 3.2. G est alors
contenu dans le groupe A des affinités. C.Q.F.D.

Le chainon manquant de la démonstration proprement dite est alors
fourni par le théoréme de Burnside. Grace aux lemmes ci-dessus, il ne
reste en effet qu'a invoquer la proposition 2.3: Si G agit de fagon affine
sur ’ensemble des racines, il ne peut contenir que p — 1 éléments d’ordre p,
puisque ceux-ci sont sans point fixe. Le sous-groupe S est donc unique, et
la preuve est complete.

Les équations de degré premier, solubles par radicaux, sont obligatoi-
rement métacycliques par le corollaire du lemme 3.2. Dans la deuxieme
édition du livre de van der Waerden [8], le § 60 leur est consacré sous ce
titre, reprenant l'argumentation de Galois. Dommage qu’il ne figure plus
dans les éditions ultérieures.

4. 1 INDICATEUR DES CYCLES

Une permutation de m objets est dite de type (j;,j,, - jm) S1 52 décompo-
sition en cycles disjoints comprend j, points fixes, j, transpositions, ..,
et j,, m-cycles. On parle de méme du type de I'élément g € G, lorsque G
agit sur un ensemble E a m objets. La fonction génératrice des types,
introduite par Polya [6], s’appelle indicateur des cycles:



	3. Un théorème de Galois

