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100 F. SIGRIST

Proposition 2.1. £ | Fix(g) | tN, ou, de façon équivalente, lAai t£at.

Démonstration. Considérons l'ensemble P des paires (g, x) telles que

gx x. P contient d'une part £ | Fix (g) |, et d'autre part E | Gx | Eo^-
tN paires, d'où l'assertion.
Pour la deuxième partie de l'énoncé de Burnside, on suppose que G agit

transitivement, et que s est le nombre (commun) d'orbites des stabilisateurs.

Proposition 2.2. Ez2^ sZat.

Démonstration. Choisissons un stabilisateur G', et notons a- le nombre
d'éléments de G' ayant exactement i points fixes. Alors ma- iat, car un
élément de G avec i points fixes appartient à i stabilisateurs. La proposition

2.1, appliquée à G', donne Ez'a- s | G' | sN/m, d'où £z2af sN,

comme annoncé.

On dira que le groupe G agit de façon affine si tout élément de G

ayant deux points fixes est l'identité. Avec cette définition, la proposition 2.1

permet d'énoncer :

Proposition 2.3. On suppose que G agit transitivement sur un
ensemble E à m éléments. Alors l'action de G est affine si et seulement

si G contient exactement m — 1 éléments sans point fixe.

Démonstration. Avec les notations ci-dessus, l'action est affine si et

seulement si a2 a3 am_1 0. Comme am 1, la proposition 2.1

pour t 0 devient a0 a2 + 2a3 -f- 3a4 + H- (m —2)am_: + m — 1.

C.Q.F.D

3. Un théorème de Galois

« Le Mémoire ci-joint est extrait d'un ouvrage que j'ai eu l'honneur de présenter
à l'Académie il y a un an. Cet ouvrage n'ayant pas été compris, les propositions
qu'il renferme ayant été révoquées en doute, j'ai dû me contenter de donner,
sous forme synthétique, les principes généraux et une seule application de ma
théorie. Je supplie mes juges de lire du moins avec attention ce peu de pages.
On trouvera ici une CONDITION générale à laquelle SATISFAIT TOUTE
ÉQUATION SOLUBLE PAR RADICAUX, et qui réciproquement assure leur
résolubilité. On en fait l'application seulement aux équations dont le degré est

un nombre premier. Voici le théorème donné par notre Analyse:
Pour qu'une équation de degré premier, qui n'a pas de diviseurs commensurables,
soit soluble par radicaux, il FAUT et il SUFFIT que toutes les racines soient
des fonctions rationnelles de deux quelconques d'entre elles... »

[4, Mémoire sur les conditions de résolubilité des équations par radicaux, extrait
de la préface du 16 janvier 1831].
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Ce résultat concernant les équations à coefficients rationnels, et dont la

démonstration se déroule entièrement dans le contexte, et le vocabulaire,
de la théorie des groupes, illustre de façon convaincante la nouveauté et

la force des idées introduites par Galois.

A une équation de degré premier p, irréductible, correspond un groupe
transitif G de permutations des p racines. G est donc d'ordre divisible par p,

et contient par conséquent un sous-groupe S cyclique d'ordre p (Galois cite

Cauchy, qui venait de démontrer cette propriété). Les éléments non triviaux
de S sont des p-cycles, et n'ont donc aucun point fixe.

Si les racines peuvent s'exprimer rationnellement à partir de deux

quelconques d'entre elles, cela équivaut au fait que le groupe G agit de façon
affine sur l'ensemble des racines. Le théorème de Galois prend alors la
forme: G est résoluble si et seulement s'il agit de façon affine sur l'ensemble

des racines.

Pour la démonstration, il est commode de prouver préalablement les

lemmes qui suivent, qui ont d'ailleurs un intérêt en eux-mêmes.

Lemme 3.1. Soit G agissant transitivement, et N un sous-groupe normal
de G. Alors toutes les orbites de N ont la même cardinalité.

Preuve. Soient Nx et Ny deux orbites. Par transitivité de l'action de G,

y gx. Comme Ng — gN, l'action de g fournit une bijection de Nx sur Ny.
C.Q.F.D.

Corollaire. Si \E \ p premier, tout sous-groupe normal non trivial
de G est d'ordre divisible par p, puisqu'il agit transitivement.

Lemme 3.2. Soit T le sous-groupe du groupe symétrique Zm, engendré
par la translation x(i) i + 1 (mod m). Alors le normalisateur de T dans
Im est le groupe des affinités A {a | a(i) ai + b (mod m), (a, m) 1}.
Le groupe A est résoluble, et son action est (évidemment) affine.

Preuve. Soit y e A. Alors yxy-1 xa avec (a, m) 1. Posons b y(0)
xè(0); alors

7(0 7^(0) yfy-fb) tai(b) xai + b(0) ai + b (mod m).

Pour la résolubilité de A, il suffit de remarquer que le quotient A/T est
le groupe commutatif des inversibles modulo m.

Corollaire. Si m p premier, le groupe A est métacyclique,
d'ordre p(p — 1).



102 F. SIGRIST

Lemme 3.3. Si G est résoluble, S en est Tunique sous-groupe d'ordre p.

Preuve. G contient alors un sous-groupe dérivé G(fc), non trivial et com-
mutatif. Celui-ci contient donc un unique sous-groupe S' d'ordre p, par
le corollaire du lemme 3.1. De ce fait, S' est normal dans G, et unique
puisque d'indice premier à p. Par conséquent S S'.

Remarque. Voici le passage correspondant de la démonstration de Galois
dans le mémoire cité (le groupe G de ce texte est bien sûr S) :

donc le groupe qui précède immédiatement le groupe G ne devra contenir
que des substitutions telles que xk,xak+b et ne contiendra pas, par conséquent,
d'autre substitution circulaire que celle du groupe G.

On raisonnera sur ce groupe comme sur le précédent, et il s'ensuivra que le
premier groupe dans l'ordre des décompositions, c'est-à-dire le groupe ACTUEL
de l'équation ne peut contenir que des substitutions de la forme xk,xak+b.

Lemme 3.4. Si S est normal dans G, G est résoluble.

Preuve. En numérotant convenablement les racines, on peut supposer
que S est le sous-groupe T des translations du lemme 3.2. G est alors

contenu dans le groupe A des affinités. C.Q.F.D.

Le chaînon manquant de la démonstration proprement dite est alors

fourni par le théorème de Burnside. Grâce aux lemmes ci-dessus, il ne
reste en effet qu'à invoquer la proposition 2.3: Si G agit de façon affine

sur l'ensemble des racines, il ne peut contenir que p — 1 éléments d'ordre p,

puisque ceux-ci sont sans point fixe. Le sous-groupe S est donc unique, et

la preuve est complète.
Les équations de degré premier, solubles par radicaux, sont obligatoirement

métacycliques par le corollaire du lemme 3.2. Dans la deuxième

édition du livre de van der Waerden [8], le § 60 leur est consacré sous ce

titre, reprenant l'argumentation de Galois. Dommage qu'il ne figure plus
dans les éditions ultérieures.

4. L'indicateur des cycles

Une permutation de m objets est dite de type (ji>j2> -dm) si sa décomposition

en cycles disjoints comprend j1 points fixes, j2 transpositions,
et jm m-cycles. On parle de même du type de l'élément g e G, lorsque G

agit sur un ensemble E à m objets. La fonction génératrice des types,

introduite par Pôlya [6], s'appelle indicateur des cycles :
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