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LE THÉORÈME DE BURNSIDE
SUR LE COMPTAGE DES ORBITES ET QUELQUES APPLICATIONS

par François Sigrist

1. Introduction

Le nombre d'orbites de l'action d'un groupe fini sur un ensemble fini
est donné par la moyenne du nombre de points fixes, calculée sur le groupe.
Dans le cas d'une action transitive, ce résultat est dû à Frobenius [3, p. 287].

Le cas général, assorti d'un perfectionnement intéressant, se trouve dans le

livre de Burnside [1, chapitre X, théorème VII, p. 191] :

"The sum of the numbers of symbols left unchanged by each of the permutations
of a permutation group of order N is tN, where t is the number of transitive
sets in which the group permutes the symbols. The sum of the squares of the
numbers of symbols left unchanged by each of the permutations of a transitive
group of order N is sN, where s is the number of transitive sets in which a

subgroup leaving one symbol unchanged permutes the symbols."

L'application la plus connue de ce résultat se trouve dans un article de

Pôlya paru en 1937 [6]. Je présenterai ci-après les principaux aspects de

cette « Pôlya's theory of counting », une méthode très efficace de
dénombrement. Mais au préalable, je montrerai comment le théorème de Galois
sur les équations de degré premier peut servir d'illustration au théorème
de Burnside. Je donnerai les démonstrations complètes pour les deux
théorèmes, car on ne les trouve pas souvent dans les ouvrages d'enseignement
ou dans les cours. Pour ne pas alourdir inutilement les énoncés, je supposerai
toujours que l'action d'un groupe est effective, et donc que seule l'identité
agit trivialement.

2. Démonstration du théorème de Burnside

Le groupe G, d'ordre N, agit sur l'ensemble F, à m éléments. On note
ot la cardinalité des orbites Ot(i= 1. t). Gx est le stabilisateur de x e E,
nt est l'ordre de Gx pour xeOt, Fix (g) est l'ensemble des points fixes de

g e G, et at est le nombre d'éléments de G ayant exactement i points fixes.
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Proposition 2.1. £ | Fix(g) | tN, ou, de façon équivalente, lAai t£at.

Démonstration. Considérons l'ensemble P des paires (g, x) telles que

gx x. P contient d'une part £ | Fix (g) |, et d'autre part E | Gx | Eo^-
tN paires, d'où l'assertion.
Pour la deuxième partie de l'énoncé de Burnside, on suppose que G agit

transitivement, et que s est le nombre (commun) d'orbites des stabilisateurs.

Proposition 2.2. Ez2^ sZat.

Démonstration. Choisissons un stabilisateur G', et notons a- le nombre
d'éléments de G' ayant exactement i points fixes. Alors ma- iat, car un
élément de G avec i points fixes appartient à i stabilisateurs. La proposition

2.1, appliquée à G', donne Ez'a- s | G' | sN/m, d'où £z2af sN,

comme annoncé.

On dira que le groupe G agit de façon affine si tout élément de G

ayant deux points fixes est l'identité. Avec cette définition, la proposition 2.1

permet d'énoncer :

Proposition 2.3. On suppose que G agit transitivement sur un
ensemble E à m éléments. Alors l'action de G est affine si et seulement

si G contient exactement m — 1 éléments sans point fixe.

Démonstration. Avec les notations ci-dessus, l'action est affine si et

seulement si a2 a3 am_1 0. Comme am 1, la proposition 2.1

pour t 0 devient a0 a2 + 2a3 -f- 3a4 + H- (m —2)am_: + m — 1.

C.Q.F.D

3. Un théorème de Galois

« Le Mémoire ci-joint est extrait d'un ouvrage que j'ai eu l'honneur de présenter
à l'Académie il y a un an. Cet ouvrage n'ayant pas été compris, les propositions
qu'il renferme ayant été révoquées en doute, j'ai dû me contenter de donner,
sous forme synthétique, les principes généraux et une seule application de ma
théorie. Je supplie mes juges de lire du moins avec attention ce peu de pages.
On trouvera ici une CONDITION générale à laquelle SATISFAIT TOUTE
ÉQUATION SOLUBLE PAR RADICAUX, et qui réciproquement assure leur
résolubilité. On en fait l'application seulement aux équations dont le degré est

un nombre premier. Voici le théorème donné par notre Analyse:
Pour qu'une équation de degré premier, qui n'a pas de diviseurs commensurables,
soit soluble par radicaux, il FAUT et il SUFFIT que toutes les racines soient
des fonctions rationnelles de deux quelconques d'entre elles... »

[4, Mémoire sur les conditions de résolubilité des équations par radicaux, extrait
de la préface du 16 janvier 1831].
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Ce résultat concernant les équations à coefficients rationnels, et dont la

démonstration se déroule entièrement dans le contexte, et le vocabulaire,
de la théorie des groupes, illustre de façon convaincante la nouveauté et

la force des idées introduites par Galois.

A une équation de degré premier p, irréductible, correspond un groupe
transitif G de permutations des p racines. G est donc d'ordre divisible par p,

et contient par conséquent un sous-groupe S cyclique d'ordre p (Galois cite

Cauchy, qui venait de démontrer cette propriété). Les éléments non triviaux
de S sont des p-cycles, et n'ont donc aucun point fixe.

Si les racines peuvent s'exprimer rationnellement à partir de deux

quelconques d'entre elles, cela équivaut au fait que le groupe G agit de façon
affine sur l'ensemble des racines. Le théorème de Galois prend alors la
forme: G est résoluble si et seulement s'il agit de façon affine sur l'ensemble

des racines.

Pour la démonstration, il est commode de prouver préalablement les

lemmes qui suivent, qui ont d'ailleurs un intérêt en eux-mêmes.

Lemme 3.1. Soit G agissant transitivement, et N un sous-groupe normal
de G. Alors toutes les orbites de N ont la même cardinalité.

Preuve. Soient Nx et Ny deux orbites. Par transitivité de l'action de G,

y gx. Comme Ng — gN, l'action de g fournit une bijection de Nx sur Ny.
C.Q.F.D.

Corollaire. Si \E \ p premier, tout sous-groupe normal non trivial
de G est d'ordre divisible par p, puisqu'il agit transitivement.

Lemme 3.2. Soit T le sous-groupe du groupe symétrique Zm, engendré
par la translation x(i) i + 1 (mod m). Alors le normalisateur de T dans
Im est le groupe des affinités A {a | a(i) ai + b (mod m), (a, m) 1}.
Le groupe A est résoluble, et son action est (évidemment) affine.

Preuve. Soit y e A. Alors yxy-1 xa avec (a, m) 1. Posons b y(0)
xè(0); alors

7(0 7^(0) yfy-fb) tai(b) xai + b(0) ai + b (mod m).

Pour la résolubilité de A, il suffit de remarquer que le quotient A/T est
le groupe commutatif des inversibles modulo m.

Corollaire. Si m p premier, le groupe A est métacyclique,
d'ordre p(p — 1).
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Lemme 3.3. Si G est résoluble, S en est Tunique sous-groupe d'ordre p.

Preuve. G contient alors un sous-groupe dérivé G(fc), non trivial et com-
mutatif. Celui-ci contient donc un unique sous-groupe S' d'ordre p, par
le corollaire du lemme 3.1. De ce fait, S' est normal dans G, et unique
puisque d'indice premier à p. Par conséquent S S'.

Remarque. Voici le passage correspondant de la démonstration de Galois
dans le mémoire cité (le groupe G de ce texte est bien sûr S) :

donc le groupe qui précède immédiatement le groupe G ne devra contenir
que des substitutions telles que xk,xak+b et ne contiendra pas, par conséquent,
d'autre substitution circulaire que celle du groupe G.

On raisonnera sur ce groupe comme sur le précédent, et il s'ensuivra que le
premier groupe dans l'ordre des décompositions, c'est-à-dire le groupe ACTUEL
de l'équation ne peut contenir que des substitutions de la forme xk,xak+b.

Lemme 3.4. Si S est normal dans G, G est résoluble.

Preuve. En numérotant convenablement les racines, on peut supposer
que S est le sous-groupe T des translations du lemme 3.2. G est alors

contenu dans le groupe A des affinités. C.Q.F.D.

Le chaînon manquant de la démonstration proprement dite est alors

fourni par le théorème de Burnside. Grâce aux lemmes ci-dessus, il ne
reste en effet qu'à invoquer la proposition 2.3: Si G agit de façon affine

sur l'ensemble des racines, il ne peut contenir que p — 1 éléments d'ordre p,

puisque ceux-ci sont sans point fixe. Le sous-groupe S est donc unique, et

la preuve est complète.
Les équations de degré premier, solubles par radicaux, sont obligatoirement

métacycliques par le corollaire du lemme 3.2. Dans la deuxième

édition du livre de van der Waerden [8], le § 60 leur est consacré sous ce

titre, reprenant l'argumentation de Galois. Dommage qu'il ne figure plus
dans les éditions ultérieures.

4. L'indicateur des cycles

Une permutation de m objets est dite de type (ji>j2> -dm) si sa décomposition

en cycles disjoints comprend j1 points fixes, j2 transpositions,
et jm m-cycles. On parle de même du type de l'élément g e G, lorsque G

agit sur un ensemble E à m objets. La fonction génératrice des types,

introduite par Pôlya [6], s'appelle indicateur des cycles :
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Z(G ; Zi, z2,.., zJ Zz{1 zji zJ •

I G |

En l'absence d'une référence à un ensemble sur lequel G agit, on convient
de considérer la représentation régulière du groupe G. Il faut remarquer
que même dans ce cas, l'indicateur des cycles ne caractérise pas le groupe:
prendre par exemple deux groupes non isomorphes d'ordre p3 et d'exposant p

premier impair [1, chapitre VIII].
L'indicateur des cycles pour le groupe des permutations de m objets £m

est connu sous forme implicite: c'est le coefficient de tm dans le développement

en série de la fonction exp (Z(z^l/i En particulier :

Z(Z3 ; Zi » 22, Z3) ^ (z 1 + 3ztz2 + 2z3)

Dans de nombreux problèmes d'énumération (frises, colliers, etc.), c'est
l'action du groupe cyclique Cm et du groupe diédral Dm sur les m sommets
d'un polygone régulier qui intervient. Les indicateurs des cycles sont dans
ces cas donnés par:

Z(Cm; z1 z2,zm) — fd
Wl d\m

Z(D2s;z1;z2, z2s) L X + Lfzr1 + Ls2
d\2s l 1

Z(D2s+i: zl9 z2,..., z2s + 1) -——— Y, ty{d) zfs + 1)ld + sz±zs2
4S + Z d\2s+ 1

Le théorème de Burnside peut s'exprimer à l'aide de l'indicateur des
cycles, puisque le nombre de points fixes d'un élément g est égal à
Pour trouver le nombre d orbites, il suffit en effet de calculer la dérivée
partielle dZ/dz1 au point z1 z2 zm 1.

5. Le THÉORÈME d'énumération de Pôlya

Dans 1 article [6] intitulé « Kombinatorische Anzahlbestimmungen für
Gruppen, Graphen und chemische Verbindungen », Pôlya décrit une méthode
de dénombrement pour les configurations inéquivalentes par l'action d'un
groupe de symétries. Conçu au départ pour compter les isomères d'une
substance chimique de géométrie donnée, le procédé permet également de
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donner des informations sur les symétries d'une molécule lorsque l'on en

connaît le nombre de différents isomères.

La situation de départ est celle d'un groupe G agissant sur un ensemble
à m éléments, qui eux-mêmes peuvent être coloriés à l'aide de n couleurs.
On demande de déterminer le nombre de colorations de E, inéquivalentes

par l'action du groupe G. La solution donnée par Pôlya s'obtient en

appliquant convenablement le théorème de Burnside :

Théorème 5.1. Le nombre de colorations de l'ensemble E à n
couleurs, inéquivalentes par l'action de G, est Z(G ; n, n,..., n).

Démonstration. En agissant sur E, le groupe G agit également sur
l'ensemble des colorations de E à n couleurs, et c'est le nombre d'orbites de

cette action qu'il faut déterminer. Par le théorème de Burnside, on est

ramené à compter les colorations de E qui sont fixes par un élément
donné g de G. Mais une coloration n'est invariante par g que si elle est

constante sur les cycles de g. Il y a donc nJl+j2 + "'+jm colorations fixes

par g, et par conséquent Z(G ; n, n,..., n) orbites. C.Q.F.D.

L'application la plus connue est celle du comptage des colliers différents

pouvant être formés avec des perles de deux couleurs. La suite des premières
valeurs obtenues, en fonction du nombre total de perles, est 2, 3, 4, 6,

8, 13, 18, 30, 46, 78, 126, 224 Elle sert souvent d'exemple résistant au
traitement par les différences finies.

Une version plus générale, dans laquelle un deuxième groupe agit sur
l'ensemble des couleurs, a été donnée par de Brüijn [2]. On en trouve une

application intéressante dans [5] : le comptage des différents thèmes dodéca-

phoniques cycliques, inéquivalents par transposition musicale.

6. Classification des colorations

Si le groupe G est trivial, il est bien connu que les nm colorations de

l'ensemble E à l'aide de n couleurs peuvent être triées selon les couleurs
utilisées. Il suffit de développer (xx+ x2 + + x„)m, puisque le coefficient
multinomial (m; il, i2,in) est le nombre de colorations nécessitant i1 fois

la couleur x1, i2 fois la couleur x2,..., et in fois la couleur xn. On dira

que de telles colorations ont le poids (i1, i2,..., in).

Dans le cas général, on peut appliquer un raisonnement analogue à

chaque terme de la formule de Burnside. On doit alors tenir compte du fait

que les colorations sont constantes sur les cycles des éléments du groupe G.
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Si geG est de type ÜiJu-JmX ü faut développer, en lieu et place de

(x1 + x2 + ..- + xn)m, le polynôme

(x1 + X2 + + X„)jl * (x \ + X 2 + + Xn)^2 * ••• * T d" X 2 + + Xn j-7

On obtient ainsi une version plus précise du théorème 5.1, qui remplace le

nombre de colorations par leur fonction génératrice :

Théorème 6.1. Le nombre de colorations de poids (il, i2, -, i„),
inéquivalentes par l'action de G, est le coefficient de x'f x2 xlnn dans

Z(G;(x! + x2 +... + x„), (xj+xl + .-. +x*)(x?+ x5 + + x)).
Pour obtenir le théorème dans une version encore plus générale, il reste

à introduire une fonction génératrice des couleurs %(x±, x2,..., xn) quelconque,
à la place de (x: +x2 + + x„). De façon pertinente, Pôlya donne à une
telle fonction le nom d'inventaire des figures. Le raisonnement avec la formule
de Burnside est le même que précédemment, et il vient :

Théorème 6.2. Si l'on colorie les éléments de E à l'aide de l'inventaire
des figures %{xljt..., x„), les colorations inéquivalentes par l'action de G

sur E ont pour fonction génératrice

Z(G-,x(xl,x2,xn\x(xlxixi),x(xT>2> •••> X»)) •

A ce degré de généralité, le résultat est d'une souplesse d'utilisation
inattendue, comme en témoigne l'exemple qui suit [6], repris en détail dans
le livre de Pôlya-Tarjan-Woods [7].

On se propose de compter les alcools aliphatiques, qui sont des molécules
d'hydrocarbures dans lesquelles la configuration des atomes de carbone
est celle d'un arbre. La racine de l'arbre est le radical OH, et la valence
du carbone exige que les ramifications soient de degré inférieur ou égal à 3.

La figure 1 en donne un exemple.
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Il s'agit donc de trouver a(n\ le nombre d'arbres différents à n nœuds,

avec toutes les ramifications de degré 1, 2 ou 3. On convient que a(0) 1,

et on note A(x) Ha(ri)xn la fonction génératrice. On remarque alors qu'à
tout arbre on peut en faire correspondre trois autres, qui sont les descendants
de l'atome de carbone jouxtant la racine OH (voir Figure 2). Mais
l'opération inverse, consistant à reconstruire un arbre à partir de trois autres,

exige que l'on identifie les triplets d'arbres qui ne diffèrent que d'une permutation.

On en déduit que la solution du problème est donnée par l'indicateur
des cycles du groupe Z3, avec comme inventaire des figures la fonction A(x)
elle-même. Le théorème 6.2 devient ainsi, si l'on tient compte du nœud

supplémentaire :

— (A(x)— 1) Z(X3 ; A(x), A(x2), ri(x3)) - (Z(x)3 + 3Z(x)ri.(x2) + 2Z(x3)).

Cette équation fonctionnelle pour la fonction A(x) permet d'en trouver
inductivement le développement en série, et les premiers termes sont

A(x) 1 -f- x + x2 -f- 2x3 -H 4x4 + 8x3 H- 17x^ H-
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