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LE THEOREME DE BURNSIDE
SUR LE COMPTAGE DES ORBITES ET QUELQUES APPLICATIONS

par Frangois SIGRIST

1. INTRODUCTION

Le nombre d’orbites de I'action d’un groupe fini sur un ensemble fini
est donné par la moyenne du nombre de points fixes, calculée sur le groupe.
Dans le cas d’une action transitive, ce résultat est di a Frobenius [3, p. 287].
Le cas général, assorti d’'un perfectionnement intéressant, se trouve dans le
livre de Burnside [1, chapitre X, théoreme VII, p. 191]:

“The sum of the numbers of symbols left unchanged by each of the permutations
of a permutation group of order N is tN, where ¢ is the number of transitive
sets in which the group permutes the symbols. The sum of the squares of the
numbers of symbols left unchanged by each of the permutations of a transitive
group of order N is sN, where s is the number of transitive sets in which a
subgroup leaving one symbol unchanged permutes the symbols.”

L’application la plus connue de ce résultat se trouve dans un article de
Polya paru en 1937 [6]. Je présenteral ci-apres les principaux aspects de
cette « Polya’s theory of counting », une méthode trés efficace de dénom-
brement. Mais au prealable, je montrerai comment le théoréme de Galois
sur les équations de degré premier peut servir d’illustration au théoréme
de Burnside. Je donnerai les démonstrations complétes pour les deux
théoremes, car on ne les trouve pas souvent dans les ouvrages d’enseignement
ou dans les cours. Pour ne pas alourdir inutilement les énoncés, je supposerai

toujours que l'action d’un groupe est effective, et donc que seule Iidentité
agit trivialement.

2. DEMONSTRATION DU THEOREME DE BURNSIDE

Le groupe G, d’ordre N, agit sur 'ensemble E, a m éléments. On note
0; la cardinalite des orbites O;(i=1..¢t). G, est le stabilisateur de x e E,
n; est l'ordre de G, pour x e O;, Fix(g) est 'ensemble des points fixes de
g € G, et g; est le nombre d’¢léments de G ayant exactement i points fixes.
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ProposITION 2.1. X | Fix(g) | = tN, ou, de fagon équivalente, Zia; = tZa,.

Démonstration. Considérons I’ensemble P des paires (g, x) telles que
gx = x. P contient d’une part X | Fix(g) |, et d’autre part X | G, | = Zo;n;
= tN paires, d’ou I'assertion.

Pour la deuxieme partie de ’énoncé de Burnside, on suppose que G agit
transitivement, et que s est le nombre (commun) d’orbites des stabilisateurs.

PROPOSITION 2.2. Zi’q; = sZa;.

Démonstration. Choisissons un stabilisateur G', et notons a; le nombre
d’¢léments de G’ ayant exactement i points fixes. Alors ma} = ia;, car un
¢lément de G avec i points fixes appartient a i stabilisateurs. La propo-
sition 2.1, appliquée a G’, donne Xia; = s| G’ | = sN/m, d’ou Zi’a; = sN, .
comme annonce.

On dira que le groupe G agit de facon affine si tout élément de G
ayant deux points fixes est I'identité. Avec cette définition, la proposition 2.1
permet d’énoncer :

ProrosiTioN 2.3. On suppose que G  agit transitivement sur un
ensemble E d m éléments. Alors laction de G est affine si et seulement
si G contient exactement m — 1 éléments sans point fixe.

Démonstration. Avec les notations ci-dessus, l'action est affine si et

seulement st a, = a3 = ... = a,_; = 0. Comme a, = 1, la proposition 2.1
pour t = O devient ay = a, + 2a; + 3a4 + .. + m—2a,,—, + m — 1.
C.QF.D

3. UN THEOREME DE GALOIS

« Le Mémoire ci-joint est extrait d’un ouvrage que j’ai eu ’honneur de présenter
a I’Académie il y a un an. Cet ouvrage n’ayant pas été compris, les propositions
qu’il renferme ayant été révoquées en doute, j’ai di me contenter de donner,
sous forme synthétique, les principes généraux et une seule application de ma
théorie. Je supplie mes juges de lire du moins avec attention ce peu de pages.
On trouvera ici une CONDITION générale a laquelle SATISFAIT TOUTE
EQUATION SOLUBLE PAR RADICAUX, et qui réciproquement assure leur
résolubilité. On en fait I'application seulement aux équations dont le degré est
un nombre premier. Voici le théoréeme donné par notre Analyse:

Pour qu’une équation de degré premier, qui n’a pas de diviseurs commensurables,
soit soluble par radicaux, il FAUT et il SUFFIT que toutes les racines soient
des fonctions rationnelles de deux quelconques d’entre elles... »

[4, Mémoire sur les conditions de résolubilité des équations par radicaux, extrait
de la préface du 16 janvier 1831].
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Ce résultat concernant les équations a coefficients rationnels, et dont la
démonstration se déroule entiérement dans le contexte, et le vocabulaire,
de la théorie des groupes, illustre de fagon convaincante la nouveauté et
la force des idées introduites par Galois.

A une équation de degré premier p, irréductible, correspond un groupe
transitif G de permutations des p racines. G est donc d’ordre divisible par p,
et contient par conséquent un sous-groupe S cyclique d’ordre p (Galois cite
Cauchy, qui venait de démontrer cette propriété). Les éléments non triviaux
de S sont des p-cycles, et n’ont donc aucun point fixe. l

Si les racines peuvent sexprimer rationnellement a partir de deux
quelconques d’entre elles, cela équivaut au fait que le groupe G agit de fagon
affine sur 'ensemble des racines. Le théoreme de Galois prend alors la
forme: G est résoluble si et seulement s’il agit de facon affine sur ensemble
des racines.

Pour la démonstration, il est commode de prouver préalablement les
lemmes qui suivent, qui ont d’ailleurs un intérét en eux-mémes.

LemME 3.1.  Soit G agissant transitivement, et N un sous-groupe normal
de G. Alors toutes les orbites de N ont la méme cardinalité.

Preuve. Soient Nx et Ny deux orbites. Par transitivité de l'action de G,
y = gx. Comme Ng = gN, l'action de g fournit une bijection de Nx sur Ny.
C.Q.F.D.

COROLLAIRE. Si | E| = p premier, tout sous-groupe normal non trivial
de G est dordre divisible par p, puisqu’il agit transitivement.

LEMME 3.2.  Soit T le sous-groupe du groupe symétrique X, engendré
par la translation (i) = i + 1 (mod m). Alors le normalisateur de T dans
X, est le groupe des affinités A = {o| (i) = ai + b (mod m), (a,m) = 1}.
Le groupe A est résoluble, et son action est (évidemment) affine.

Preuve. Soit y e A. Alors yty~! = 1% avec (a, m) = 1. Posons b = v(0)
= 1°(0); alors

Y(i) = y7'(0) = vty 1(b) = (b)) = 1*%0) = ai + b (mod m).
Pour la résolubilit¢ de A, il suffit de remarquer que le quotient A/T est

le groupe commutatif des inversibles modulo m.

COROLLAIRE. Si - m = p premier, le groupe A est métacyclique,
dordre p(p—1).
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LEMME 3.3. Si G estrésoluble, S en est l'unique sous-groupe d’ordre p.

Preuve. G contient alors un sous-groupe dérivé G®, non trivial et com-
mutatif. Celui-ci contient donc un unique sous-groupe S’ d’ordre p, par
le corollaire du lemme 3.1. De ce fait, S’ est normal dans G, et unique
puisque d’indice premier a p. Par conséquent § = S

Remarque. Voici le passage correspondant de la démonstration de Galois
dans le mémoire cité (le groupe G de ce texte est bien siir S):

..donc le groupe qui précéde immédiatement le groupe G ne devra contenir
que des substitutions telles que x,, X, 4+, €t ne contiendra pas, par conséquent,
d’autre substitution circulaire que celle du groupe G.

On raisonnera sur ce groupe comme sur le précédent, et il s’ensuivra que le
premier groupe dans I'ordre des décompositions, c’est-a-dire le groupe ACTUEL
de I’équation ne peut contenir que des substitutions de la forme x;, X4 4p-

LEMME 34. Si S est normal dans G, G est résoluble.

Preuve. En numérotant convenablement les racines, on peut supposer
que S est le sous-groupe T des translations du lemme 3.2. G est alors
contenu dans le groupe A des affinités. C.Q.F.D.

Le chainon manquant de la démonstration proprement dite est alors
fourni par le théoréme de Burnside. Grace aux lemmes ci-dessus, il ne
reste en effet qu'a invoquer la proposition 2.3: Si G agit de fagon affine
sur ’ensemble des racines, il ne peut contenir que p — 1 éléments d’ordre p,
puisque ceux-ci sont sans point fixe. Le sous-groupe S est donc unique, et
la preuve est complete.

Les équations de degré premier, solubles par radicaux, sont obligatoi-
rement métacycliques par le corollaire du lemme 3.2. Dans la deuxieme
édition du livre de van der Waerden [8], le § 60 leur est consacré sous ce
titre, reprenant l'argumentation de Galois. Dommage qu’il ne figure plus
dans les éditions ultérieures.

4. 1 INDICATEUR DES CYCLES

Une permutation de m objets est dite de type (j;,j,, - jm) S1 52 décompo-
sition en cycles disjoints comprend j, points fixes, j, transpositions, ..,
et j,, m-cycles. On parle de méme du type de I'élément g € G, lorsque G
agit sur un ensemble E a m objets. La fonction génératrice des types,
introduite par Polya [6], s’appelle indicateur des cycles:
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Z(Gizy,2y, 0 2y) = — Zzitz .. zIm.
|G|
En I'absence d’une référence a un ensemble sur lequel G agit, on convient
de considérer la représentation réguliére du groupe G. Il faut remarquer
que méme dans ce cas, 'indicateur des cycles ne caractérise pas le groupe:
prendre par exemple deux groupes non isomorphes d’ordre p> et d’exposant p
premier impair [ 1, chapitre VIII].
L’indicateur des cycles pour le groupe des permutations de m objets X,
est connu sous forme implicite: c’est le coefficient de t™ dans le dévelop-
pement en série de la fonction exp (X(z;t/i)). En particulier:

1
2(X33521,25,23) = 6(2?4‘32122‘*‘223)-

Dans de nombreux problémes d’énumération (frises, colliers, etc.), cest
Paction du groupe cyclique C,, et du groupe diédral D, sur les m sommets
d’un polygone régulier qui intervient. Les indicateurs des cycles sont dans
ces cas donnés par:

1
Z(Cm;zla Z7 5 weny Zm) = a dlZ: (P(d) ijn/d
Z(D2 C ez Zz) = i Z (p(d)ZZS/d +_S_ZZZs—1 -I-EZS
ot 4s d[2s ‘ 2 "t72 2772
1

Y od)z@stoe 4 52,25

Z(Dysi1:215 22, e Zag11) =
4s + 2 g135+1

Le théoréme de Burnside peut s’exprimer a l'aide de Iindicateur des
cycles, puisque le nombre de points fixes d’un élément g est egal a j,.
Pour trouver le nombre d’orbites, il suffit en effet de calculer la dérivée
partielle 0Z/0z; au point z; = z, = .. =z, = 1.

5. LE THEOREME D’ENUMERATION DE POLYA

Dans larticle [6] intitulé « Kombinatorische Anzahlbestimmungen fiir
Gruppen, Graphen und chemische Verbindungen », Polya décrit une méthode
de dénombrement pour les configurations inéquivalentes par l'action d’un
groupe de symétries. Congu au départ pour compter les isomeéres d’une
substance chimique de géométrie donnée, le procédé permet également de
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donner des informations sur les symétries d’'une molécule lorsque I'on en
connait le nombre de différents isomeres.

La situation de départ est celle d’un groupe G agissant sur un ensemble
a m €léments, qui eux-mémes peuvent étre coloriés a I'aide de n couleurs.
On demande de déterminer le nombre de colorations de E, inéquivalentes
par laction du groupe G. La solution donnée par Polya s’obtient en
appliquant convenablement le théoréme de Burnside:

THEOREME 5.1. Le nombre de colorations de lensemble E a4 n cou-
leurs, inéquivalentes par Paction de G, est Z(G;n,n, ..., n).

Démonstration. En agissant sur E, le groupe G agit également sur
I’ensemble des colorations de E a n couleurs, et c’est le nombre d’orbites de
cette action qu’il faut déterminer. Par le théoréme de Burnside, on est
ramené a compter les colorations de E qui sont fixes par un élément
donné g de G. Mais une coloration n’est invariante par g que si elle est
constante sur les cycles de g. Il y a donc n/t*/2%%Jm colorations fixes
par g, et par conséquent Z(G; n, n, ..., n) orbites. C.Q.F.D.

L’application la plus connue est celle du comptage des colliers différents
pouvant étre formés avec des perles de deux couleurs. La suite des premicres
valeurs obtenues, en fonction du nombre total de perles, est 2, 3, 4, 6,
8, 13, 18, 30, 46, 78, 126, 224 .. Elle sert souvent d’exemple résistant au
traitement par les différences finies.

Une version plus générale, dans laquelle un deuxiéme groupe agit sur
I’ensemble des couleurs, a été donnée par de Bruijn [2]. On en trouve une
application intéressante dans [5]: le comptage des differents thémes dodéca-
phoniques cycliques, inéquivalents par transposition musicale.

6. CLASSIFICATION DES COLORATIONS

Si le groupe G est trivial, il est bien connu que les »™ colorations de
I’ensemble E a l'aide de n couleurs peuvent étre triées selon les couleurs
utilisées. Il suffit de developper (x;+x,+..+x,)", puisque le coefficient
multinomial (m;i,,i,, .. i,) est le nombre de colorations nécessitant i; fois
la couleur x,, i, fois la couleur x,,.., et i, fois la couleur x,. On dira
que de telles colorations ont le poids (iy, iy, ..., i,).

Dans le cas général, on peut appliquer un raisonnement analogue a
chaque terme de la formule de Burnside. On doit alors tenir compte du fait
que les colorations sont constantes sur les cycles des éléments du groupe G.
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Si ge G est de type (ji,Jjs, .. Jjm) il faut développer, en lieu et place de
(x;+Xx,+...+x,)", le polyndbme

(X4 XgF et x,)00 e 24X+ x2)2e L (XTHXT 4 X))

On obtient ainsi une version plus précise du théoréme 5.1, qui remplace le
nombre de colorations par leur fonction génératrice:

THEOREME 6.1. Le nombre de colorations de poids (iy, iy, .., I,), inéqui-
valentes par Paction de G, est le coefficient de x%{ x2 ..x, dans

Z(G; (g + Xy 4+ x,), 3+ X34 xD), oy (XTHXT+ .4 X))

Pour obtenir le théoréme dans une version encore plus générale, il reste
a introduire une fonction génératrice des couleurs x(x;, x5, ..., X,) quelconque,
a la place de (x;+x,+..+x,). De fagon pertinente, Polya donne a une
telle fonction le nom d’inventaire des figures. Le raisonnement avec la formule
de Burnside est le méme que précédemment, et il vient:

THEOREME 6.2. Si l'on colorie les éléments de E d laide de linventaire
des figures x(xy,.., X,), les colorations inéquivalentes par laction de G
sur E ont pour fonction génératrice

Z(G (X1 5 Xy ey X), XX T, X3, ey X7); e XX Ty X, oy XT)

A ce degré de généralité, le résultat est d’une souplesse d’utilisation
inattendue, comme en témoigne 'exemple qui suit [6], repris en détail dans
le livre de Polya-Tarjan-Woods [7].

On se propose de compter les alcools aliphatiques, qui sont des molécules
d’hydrocarbures dans lesquelles la configuration des atomes de carbone
est celle d’un arbre. La racine de I'arbre est le radical OH, et la valence

du carbone exige que les ramifications soient de degré inférieur ou égal a 3.
La figure 1 en donne un exemple.

&

OH =

wmase () ey

Figure | Figure 2
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Il s’agit donc de trouver a(n), le nombre d’arbres différents a n nceuds,
avec toutes les ramifications de degré 1, 2 ou 3. On convient que a(0) = 1,
et on note A(x) = Za(n)x" la fonction génératrice. On remarque alors qu’a
tout arbre on peut en faire correspondre trois autres, qui sont les descendants
de Patome de carbone jouxtant la racine OH (voir Figure 2). Mais I'opé-
ration inverse, consistant a reconstruire un arbre a partir de trois autres,
exige que 'on identifie les triplets d’arbres qui ne different que d’'une permu-
tation. On en déduit que la solution du probléme est donnée par I'indicateur
des cycles du groupe X,, avec comme inventaire des figures la fonction A(x)
elle-méme. Le théoréme 6.2 devient ainsi, si 'on tient compte du nceud
supplémentaire :

i (A(x)—1) = Z(Z3; A(x), A(x?), A(x?)) = é (A(x)? + 3A(x)A(x?) + 2A(x%)) .

Cette équation fonctionnelle pour la fonction A(x) permet d’en trouver
inductivement le développement en série, et les premiers termes sont

Ax) = 1 + x + x% 4+ 2x3 + 4x* + 8x°> + 17x° + ...
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