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LIE BRACKET AND CURVATURE

by Hans SAMELSON 1)

We consider two standard facts, which can be described briefly as
(a) Lie bracket = infinitesimal commutator, and (b) Curvature = infinitesimal
holonomy. The usual proofs of these facts use Taylor expansions in some
form and run quite parallel to each other. It is our purpose to deduce (b)
from (a); the point being that covariant differentiation, suitably interpreted,
is a Lie bracket.

1. (a Let M be a (smooth, C*) manifold (of dimension n), and
consider two vectorfields X and Y on M (defined, say, as derivations of
the R-algebra of smooth real-valued functions on M, or pointwise, ie., as
(smooth) sections of the tangent bundle TM of M, with X, or X(p)
denoting the value at a point p of M). The Lie bracket [XY] is then the
operator X o Y — Y o X on the algebra of functions, which happens to be
a vector field again.

(b) Let E be a vector bundle over M (e.g., the tangent bundle), with
projection w: E - M, and let D be a connection on E (defined, say, as a
function that assigns to each vectorfield X on M an operator Dy that sends
any section s of E to another section Dys, additive and satisfying
(1) Dyys = f-Dys and (2) Dyf:s = f-Dxs+ Xf-s; alternatively,
D assigns to each point of E a “horizontal” subspace h of the tangent
space E, to E at e, complementary to the tangent space to the fiber
of m through e, with certain linearity conditions).

A standard simple calculation shows that for two vectorfields X and Y
on M the operator Diyy; — Dy o Dy + Dy o Dy (which sends sections of E
to sections of E) is in fact a tensor, a section of Hom (E, E), which at
each point p of M defines a linear map of the fiber n~Y(p) = EP of E
at p to itself. The tensor is denoted by Ryy, and called the curvature
tensor of D; the map at p is denoted by Ryy(p). The value Ry,(p)
depends only on the values X, and Y, of X and Y at P (and not on

) Supported by NSF grant No. DMS85-06816.



94 H. SAMELSON

the values at other points) (and the curvature tensor has some additional
properties which we don’t need). For more detailed definitions one might
consult [2].

2. Both Lie bracket [X Y] and curvature Ry, tensor are related to the
flows exp (X, t) and exp (Y, t) of X and Y.

(a) For the bracket one constructs, for a given value of t, a map
o(t): M - M by, starting with any point p in M, following first the
X-flow, then the Y-flow, then the — X-flow, finally the — Y-flow, each time
from O to ¢; i.e., one applies the commutator

exp(—Y,t)oexp(—X,t)oexp(Y,t)oexp(X,t).

(Thus one forms a “curved square”, which however is usually not closed,
1.e., one has o@(t, p) # p.) The fact “Lie bracket = infinitesimal commutator”
mentioned in the Introduction is the following formula (including the existence
of the limit on the right)

.1
(L) [XY], = hrrolgg(cp(t, p)—p).

t—
Here the difference on the right is interpreted as taking place in R”",
via any coordinate system at p. For a recent proof see [1].

(b) There is a similar development for the curvature. This time we take
two vectorfields X, Y with [ XY] = 0. It is standard fact that then the two
flows described in (a) commute, and so o¢(t) = id, and the “square” is now
a closed curve, going from p back to p. Moving the points in the fiber
E? D-parallel around the square, one gets the holonomy transformation H(t),
which at each p gives a linear map H(t, p) of the fiber E? to itself.
The fact “curvature = infinitesimal holonomy” mentioned in the Introduction
is the following formula

|
(H) Ryy(p) = lim — (H(t, p)—id).

t—0

For a proof see again [1], e.g.

3. As noted above, the proofs for (L) and (H) are completely parallel.
This situation, the same proof for two facts, has always seemed unsatisfactory
to the writer. The purpose of this note is to derive (H) as an application
of (L), by interpreting covariant derivative D as a Lie bracket (to be sure
in E, not in M).
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For each vectorfield X in M we define its horizontal lift X" a vector
field on E, by defining the value X"(e) at any e in E to be the unique
horizontal vector, in the horizontal space h(e) at e, that projects to X,
under © (here p=mn(e)). We note that the flow for X " is D-parallel transport
for E along X. ‘

Similarly, for each section s of E we define its vertical extension s,
a vector field in E, by assigning to any e in E the vertical vector s(p)
at e (one has to note that the fiber E?, for p = m(e), is a vector space
and that therefore one has the standard identification of E? with its own
tangent space at any point). Thus s’, restricted to a fiber, is a “constant”
vectorfield in EP, with value s(p). Both X" and s” are m-projectable, in
the sense of Chevalley, with X" projecting to X and s’ projecting to O.

4. The main observation now expresses covariant derivative as Lie
bracket.

Fact. Let X be a vector field in M, and let s be a section of E.
Then

(Dys)” = [X"s"].

Interpreting the operation [ X" —] as Lie derivative, i.e. as the infinitesimal
action of the flow of X" on tangent vectors to E, one sees easily that
the right hand side is at any rate of the form sy for some section s,
of E: the flow for X" being D-parallel transport, sends a constant vector
field in one fiber to constant fields in the transported fibers.

For the proof of the Fact: It is practically a tautology, if one
interprets Dys as the (infinitesimal) deviation of s from being D-parallel
along X. Or again: First suppose s is D-parallel along X. Then the flow
for X" maps s° to itself, and as a result we have [X"s°] = 0, so the Fact
checks 1n this case. Further, both sides of the equation in the Fact have
the “derivation” property relative to functions f on M :

(Dxf +5)" = (f - Dys+Xt-5)" = f7-(Dys)’ + (Xf)’-s"
(where f" means f o m, i.e. f pulled back to E), and
[Xh, fvSv] — fv. [Xth] + thv . Sv;

clearly we have (X f)* = X"f". Thus the Fact holds for fs, with s D-parallel
along X. At any p in M with X, # 0 there are sufficiently many such
sections s; to generate all sections as X f;s;. At zeros of X on the boundary
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of its zero-set the result follows by continuity; and at interior points it is
trivial. (Incidentally, the right hand side is function-linear in X, since
s'fY = 0 for any f; namely, f* is constant on each fiber of E.)

5. Now to the proof of relation (H) in section 1, assuming (L).

Let X and Y be two vector fields in M with [XY] = 0; then the
“square”-construction of section 2 (a) for X and Y on M has o(t) = id
for all t. (Note that for a given p in M and vectors X,, Y, at p we
can arrange X, = X,, Y, = Y,.) To X and Y we form X" and Y" as
in section 3. As already noted, the flows in E for X" and for Y" are
D-parallel transport and map fibers of E linearly into fibers of E.

Thus the “square” construction of section 2 (a) for X" and Y" on E
gives a map H(t): E — E, which maps the fiber E? at any p linearly to
itself; this is the holonomy transformation. It follows that the right hand side
in (L) (for X" and Y" on E) at each p gives a linear map, say Syy(p)
of E? to itself, which satisfies

(S) [X"Y"](e) = Sxx(p)(e).

Here the right hand side has to be regarded as a tangent vector to E?
(and thus to E) at e (again using the usual identification for tangent spaces
of vector spaces). (At this point the nature of the dependence of Syy(p)
on X and Y is not clear).

To prove (H) we must show that Syy(p) equals Ryy(p). The defining
relation for Ryy is now — DyDy + DyDy = Ryy, because of [XY] = 0.
Thus we must show

[Xth] (S(P)) = ((”DXDY‘FDYDX)S)U(S(P))

for any sections s of E and any p in M. (Recall that now we must
regard Ryy(p)(e) not as a point in EP, but as a tangent vector to the
vector space E? at e) By the Fact of section 4 the right hand side is

— [X"[Y"s]] (s(p)) + [Y'LX"s"1] (s(p))-
By the Jacobi identity for vectorfields this equals
— [[X"Y")s°] (s(p)) -

We must show that this equals [X"Y"] (s(p)).

Now the field [X"Y"] is everywhere tangent to the fibers of E since
it projects to [XY] = 0; also s” is tangent to the fibers, by definition.
Thus it is enough to evaluate everything on the individual fibers EP.
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And on each fiber EP the field s® is constant, and the field [X"Y"] is
linear (where a linear vectorfield P on a vector space V is defined by a
linear map, also denoted by P, of V to itself, and assigns to a vector w
the vector P(w)qua tangent vector at w). It is elementary that for a linear
vector field P, and a constant vectorfield Q with value w,, on a vector
space V the bracket [PQ] is again constant, with value — P(wgy). Thus the
value of [[X"Yh]s"] at any e in E? is — [X"Y"](s(p)), and our result
follows.
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