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88 B. ECKMANN
4. SyMPLECTIC HR-MATRICES

4.1. Symplectic matrices 4 leave invariant the bilinear form with coefficient
. E.)\ . . :
matrix J = < E >; ie, ATJA = J. With respect to the HR-matrix

relations (1) they behave exactly like orthogonal or unitary matrices:

ProrosiTiON 4.1. Let A,, A,, .., A, be 2n x 2n-matrices, and Ay=E,,.
s 1

Then ) x;A; is symplectic up to the factor Y x?% for all xq, Xy, ., X
0 0

if and only if A,, A,, .., A, is a set of symplectic HR-matrices.
Proof. (Z xjAjT> J <Z xjAj> =Y x;A]JA;
0 0 0

+ Zxoxj(AfJ+JAj) + Z xjxk(AjTJAk—l—AkTJAj), j#k.
1 k=

j’ 1

Assume AJJA; = J,j =0, .. s; and
A2 = — E AA + AA; =0, ik =1,.,8]#k,
Then — ATJ = JA;, and ATJA, + ATJA, = — J(A;4,+ A,A;) = 0. Thus

N

the whole expression reduces to <Z X Jz> J. The argument is plainly reversible.
0

4.2. In the following, “symplectic” will mean unitary symplectic; i.e., we
consider matrices from the compact group Sp(n) = U(2n). A set of symplectic
HR-matrices A4,, 4,, .., A, 1s thus an e-representation of G, in Sp(n); we
continue to call its degree 2n. The notations v3? 457, D57 ESP have the
same meaning as before for U and for O.

All elements of G, have square 1 or ¢; a matrix € U(2n) of square + E

A B
is symplectic if and only if it is of the form ( B E) with B* = — B,

AT = A in the case of square E, and B' = B, A' = — A in the case of
square — E. Symplectic representations of G, are sums of irreducible unitary
representations; if an irreducible unitary e-representation is not (equivalent
to a) symplectic, we have to add its conjugate-complex in order to obtain
an irreducible symplectic e-representation. Due to the description (2) of the
G, the following observations yield the complete list of degrees etc.
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43. (a) The tensor product of a unitary representation V' of even degree
and an orthogonal representation (of any degree) is symplectic if and only
if V 1s.

(b) Since Sp(1) = SU(2), the irreducible unitary e-representations (of degree 2)
of G, = Q are symplectic.

(c) The irreducible e-representations of D (= dihedral group of order 8)
are not symplectic, but orthogonal; the same holds for D’ and DK,
K = Klein 4-group.

(d) The tensor product of any representation with the irreducible e-repre-
sentation (of degree 1) of G, = C is not symplectic.

The periodicity modulo 8, G,,s = GgG, = D*G,, with dJ = d§ = 16,
yields d3%s = 16457 and v524 = v37. For s = 2, 3,4 modulo 8 the irre-
ducible unitary e-representations of G, are symplectic, d5? = dY and
vs? = v7; for the other s they are not, thus d5? = 2dV. Fors = 1, 5 modulo 8
the conjugate-complex representations are inequivalent, thus v3? = 1; for
s = 0,6,7 we combine two equivalent representations, thus v3? = vV, ie,
vi? = 1 for s = 0,6 and v5? = 2 for s = 7. The restriction arguments from
G,+1 to G are as before and yield the ES?, which are periodic modulo 8.

We summarize the results in the following table

6) s 0 1 2 3 4 5 6 7 8 9

v L1 12 1 1 12 11
s |2 2 2 2 4 8 16 16 32 32

D% | Z V4 72 1707 Z Z 7 107 Z Z

ESP 0 0 0 Z 7Z/2 7/2 0 Z 0 0

4.4. Comparing with (3) one notes that D¢ = D52, and E? = E52,. The
isomorphisms can be made explicit in terms of the w-product introduced
in 2.2, as follows.

Let p;eDi = D% be one of the generators, Ps = p3, and c,eD?
one of the generators. The product p, U o, e D/ ., has degree 2.2.4°:
this is precisely the degree of a generator of D;?,. We check that py U c,
is indeed in DJ?, and thus a generator: this is clear for t=0,6,7,
t +4=23,4modulo 8 where D7, = DU, ,; for t = 1,2,3, 4, 5 we know
that o, = p, + p,, whence p; U 6, = p; U p, + P3 U p,, i€, it is one of the
generators of D57, .
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THEOREM 4.1. The product of the generator p;e EY = E3 with E?
is an isomorphism E? = ES?, for all s > 0.

4.5. We now consider the homomorphism 0: E5? — n (Sp), analogous to ¢
and s before.

Let 4,,A4,,.., 4, be a set of s symplectic 2n x 2n HR-matrices, and
Ao = E. Then

FslXgs X1, om X5} = Z xjAj

N
X = (Xg, X1, X)) ERETL Y x2 = 1, is symplectic. We consider f; as a map
0

S* — Sp via Sp(n); as in the cases U and O this yields a homomorphism
0: ES? - nt(Sp), s = 0. The = (Sp) are known to be 0 or cyclic. Theorem A’
can now be reformulated as follows.

THEOREM B'. 0 is an isomorphism E3? — w (Sp), s = 0.

For s =3 this is clear: since E5? = EY and m5(Sp) = n5(Sp(1))
= 75(SU(2)) = n5(U), ¢ = 0(ps) is a generator of n5(Sp) = Z.

To complete the proof of Theorem B’ we use, as for Theorem B,
the u-product and results of K-theory relating Kg with Ky, the quaternionic
or symplectic K-theory. The product ¢ U b, b € t,(0), can be expressed in
terms of linear maps S° — Sp(1) = SU(2), $* — O(m), S°** — U(4m). As seen
in 4.3, it lies in fact in Sp(2m) < U(4m) and can thus be regarded as an
element of m . ,(Sp). The map ¢ u—: 7 (0) — T, ,(Sp) corresponds, under
m,(0) = Ke(S**Y) and m,(Sp) = Ku(S'*Y), to the isomorphism Kg(S°+")
— Ky(S°+%) given by the external tensor product of bundles with the
generating bundles of IEH(S“) = 7 (see [K], p. 154). Hence ¢ u— 1is an
isomorphism 7 (0) = T, 4(Sp).

Moreover, since everything is described by linear maps the diagram
E° % (0

N

pau — l l cu~—

0
E§£4 —¥ s+ 4(SP)

is commutative. The upper and the two vertical maps being isomorphisms,
so 1is 0.
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