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84 B. ECKMANN

Theorem 2.3. E^ is the polynomial ring Z[p1].

2.4. The ring E°.
We denote by gs the generator of Ef 0 if s 2, 4, 5, 6 modulo 8;

determined up to sign if s 3, 7 modulo 8 where Ef Z).
The generator p7 p*) e E% can be given by a real s-representation

of degree 8 which we can use as generator a7 e E°. The ring homo-
morphism ®: E° -> induced by the embedding 0 -> U, 0(a7) p79 is

thus an isomorphism F7 F7. In F J the degree of a7aseEs°+8 is

16J f d?+8. Hence g7gs is irreducible, i.e., + gs + 8 for all s. In particular

we can choose a15 a7, a23 cr7,..., u8r-1 a7.

Proposition 2.4. The isomorphism E° Ef+8 can be given by the

product with a7 e E °.

Proposition 2.5. a7E£7 generates a subring of EJ which is the

polynomial ring Z[a7].
We further note that <j3<=E° is mapped by <D to 2p3e£3. From

0(a3) 4p3 4p7 0(4a7) we infer that a3 4a7. As for g0eE%,
it is of degree 1 and order 2, and aje£f is of degree 2 and order 2,

i.e., Qq g1. Of course g I 0.

In summary :

Theorem 2.6. E° is the commutative ring, graded by s + 1 for
generated by a0,a3,a7 with the only relations 2g0 0, g I 0,

cr§ 4ct7

3. The homotopy groups of U and 0

3.1. We will deal explicitly with the unitary case. The orthogonal case

can be treated in almost exactly the same way; any additional arguments
will be mentioned wherever necessary.

In the Introduction 0.1 we associated with a set of s unitary n x n

HR-matrices, i.e., with an s-representation of Gs, a map / : Ss -> U of the

s-sphere Ss c= Rs+1 into the infinite unitary group U via U(n). Since

conjugation is homo topic to the identity, equivalent representations yield homo-

topic maps / (in the orthogonal case, we have to observe that conjugation
can be made with a matrix from the identity component). The map
(j>: Ds ns(U) thus obtained is a homomorphism; indeed, homotopy group
addition of / and /' in ns(U(n)) can be replaced by multiplication in
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U(n); this is homotopic in U(2n) to the map ^fJ, and on the other

hand addition in is defined through the direct sum of representations.

If the s-representation is restricted from D^+1, i.e., if the set of HR-matrices

belongs to a set of s + 1 HR-matrices, / extends to a map Ss+1 — U and
is thus nullhomotopic. The homomorphism § therefore induces a homo-
morphism E% -> ns(U), again written 4>. The analogue Ef -> ns(0) will be

denoted by \|/. The groups and £s° are 0 or cyclic generated by
irreducible s-representations, i.e., by HR-matrices of minimal size. Our claim,
Theorem A, can therefore be reformulated as follows.

Theorem B. The homomorphisms 4> : -> ns(U) and v|/: Ef — ns(0)
are isomorphisms, s 0, 1, 2,...

3.2. For small values of s the claim is easily checked.

Case U

s 1 : E J7 can be generated by one HR-matrix A1 i). Thus

f(x0,x i) (xo + ixje 1/(1)

if Xq + x\ 1. This is a generator of tt1(T/(1)) n^U) Z.

5 3: E 3 is generated by 3 HR-matrices

Al-i)'Al(-1 )'
Thus

/V \ f X0 + iX 1 X2 + OC3\
/(x0,x1,x2,x3) e 5(7(2)

\-x2 + ix3 x0-ixj
3

if Xxj This is a generator of n3(SU(2)) [ 7u3(S3)] %3(U) Z.

Case 0

s 0: Empty set of HR-matrices, f(x0)(x0) e 0(1) if 1, x0 ± 1.
This is a generator of 7t0(0(l)) n0(O) Z/2.

s 1 : is generated by one HR-matrix A1 f 1

j. Thus

/(*<>, *r) *°Xl)eSO(2)

\ X1 xo)
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if Xq + x\ 1. This is a generator of 7i1(50(2)) Z; as a map 51 -> 50(3)
it is a generator of 71^50(3)) nfO) Z/2.

s 3: E 3 is generated by three 4x4 HR-matrices which yield

X0 Xj.

f(x0, xl9 x2, x3) =1 -x1 x0 x3 -x2 \eS0(4)
x2 x3 x0

-x3 X2 -Xi
3

if Y xj 1- This is a map 5 3 50(4) which is well-known to become,
o

under 50(4) 50(5), a generator of 7i3(50(5)) n3(0) Z.

3.3. The proof of Theorem B becomes very simple if (j) and v|/ are turned
00

into ring homomorphisms k%(U) © ns(U) (tc^ Z generated by
- 1

the ring unit) and E° -» 7ü#(0). For this purpose we have to define a

product in 71^(0) and tc^(O), graded by s + 1 for ns. This is done by
extending the product introduced in 2.2 from linear maps / : 5s -> U or 0
to arbitrary continuous maps.

Given a continuous map / : 5s -> U via U(n),

Ss {x (x0, xl5..., xs) g Rs+1 with I x I 1}

we extend it to /0: Rs + 1
-+ Mn(C) by /0(x) |x]/^^j, °'

Similarly for g: 5< -* U via l/(m), 5' {y g R+1 with | y | 1}. Then

m x /oM ® Em En ® gfoO?)
F(x, y)

® 0oG>) /oW ® ek

is a unitary 2wn x 2nm matrix for all (x, y) e Rs+t + 2 with | x |
2 + | y |

2 1

and thus defines a map F : Ss+t + 1 U via U(2nm). Homo topic maps /,
or g respectively, yield homotopic F and we obtain a product F f u g

j ns(U) x nt(U)^ns+t + 1(U).

iFrom the description of homotopy group addition in ns(U) as given above

jin 3.1 one easily checks that fug is distributive. Thus 7z%(U) is a ring,
Sand so is n%(0), graded by s + 1 for ns(U) or 7ts(0).

3.4. Bott periodicity is usually expressed in terms of complex and real

;K-theory. We thus use the isomorphisms
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n,(V) KC(SS+1) and n,(0)

We recall that tcs(I7) KC(SS + 1)is obtained through nJU) KC{BS+1, Ss

where Bs+1 is the unit ball {x e Rs+1, | x | < 1}; the element corresponding

to f ens(U) is given by two (trivial) C-vector bundles over identifiée

on Ss by means of /. It will not come as a surprise that above

corresponds to the u-product

KC(BS + \SS) x Kc(Bt+1,S')->
given by the external tensor product of bundles. Indeed the map / u

F:Ss+t+1 -> U via U(2nm) can be interpreted as follows: One decom

poses Ss+t+1 c Rs+, + 2 (coordinates x0, y0, yt y,with |x|'

+ I y I 2= 1) into {| x |
2 < 1, | y |

2 ^ 1} homeomorphic to Bs + 1 x S' anc

{I x I2 Ss -, I y I
2 ^ ^-} homeomorphic to 5s x ; the map F is

(fix) ® Em 0 \
on ss y ^ e y. 0; I x I

^

V 0 f(x)T®EmJ

° En®g(y)\
on (0) x i.e. X 0,1 y I 1

\-En<g) g(y)T 0 /
Under KC(BS + 1, Ss) KC(SS + 1) one then has a graded ring structure ii

°° ~
0 Kc(Ss + i) isomorphic to According to the Bott periodicity theoren
-1
(see [K], p. 123) this ring is the polynomial ring Z[a] generated by th<

generator of KC(S2); i.e., n^(U) is the polynomial ring generated by th<

generator a of n^U).
Similarly, 7t*(0) is the commutative ring with generators b0 e n0(O

b3en3(0\ b7 e tt7(0) with relations 2b0 0, bo 0, b\ 4b7 ([K~

p. 156-157).

To prove Theorem B we therefore only have to show:

Case U. p1 e is mapped by <j) to a e n^U).
Case O. a0 e Eq is mapped by \|/ to b0 & n0(O) and a3 e E3 to b3e n3(0

This has already been done in 3.2.
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