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84 B. ECKMANN

THEOREM 2.3. EUY is the polynomial ring Z[p,].

24. THERING E?.

We denote by o, the generator of EC (= 0 if s = 2,4, 5,6 modulo 8;
determined up to sign if s = 3, 7 modulo 8 where E¢ = Z).

The generator p, (= p}) e EY can be given by a real s-representation
of degree 8 which we can use as generator o,e E9. The ring homo-
morphism @: E¢ - EY induced by the embedding O — U, ®(c,) = p, is
thus an isomorphism E9 = EY. In E¢ the degree of c,0,€e E, 5 is
16d? = d?, . Hence o0, is irreducible, i.e, = + o,, for all 5. In parti-
cular we can choose 6,5 = 6%, 6,3 = 63,..,0g,_; = G&.

PROPOSITION 2.4. The isomorphism E?2 = E% ¢ can be given by the
product with o, e E9.

PROPOSITION 2.5. o,€ EY generates a subring of ES which is the
polynomial ring Z[c-].

We further note that c;e E$ is mapped by ® to 2p;e EY. From
O(c3) = 4p% = 4p, = ®(4o,) we infer that 6% = 45,. As for o, e EY,
it is of degree 1 and order 2, and c}eE{ is of degree 2 and order 2,
ie,o0d = o,. Of course 3 = 0.

In summary:

THEOREM 2.6. E$ is the commutative ring, graded by s +
E9, generated by o©,,G3,0, with the only relations 26, = 0, G

1 for
0 =0,
c3 = 40,.

3. THE HOMOTOPY GROUPS OF U AND O

3.1. We will deal explicitly with the unitary case. The orthogonal case
can be treated in almost exactly the same way; any additional arguments
will be mentioned wherever necessary.

In the Introduction 0.1 we associated with a set of s unitary n x n
-HR-matrices, i.e., with an e-representation of G,, a map f:S° — U of the
s-sphere S* < R**! into the infinite unitary group U via U(n). Since con-
jugation is homotopic to the identity, equivalent representations yield homo-
topic maps f (in the orthogonal case, we have to observe that conjugation
can be made with a matrix from the identity component). The map
¢: DY — r (U) thus obtained is a homomorphism; indeed, homotopy group
addition of f and f’ in m,(U(n)) can be replaced by multiplication in
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0
U(n); this is homotopic in U(2n) to the map <g f')’ and on the other

hand addition in DV is defined through the direct sum of representations.

If the e-representation is restricted from DY, , , i.e., if the set of HR-matrices
belongs to a set of s + 1 HR-matrices, f extends to a map S**! — U and
is thus nullhomotopic. The homomorphism ¢ therefore induces a homo-
morphism EY — n (U), again written ¢. The analogue E¢ — n (0) will be
denoted by V. The groups EY and E? are 0 or cyclic generated by
irreducible e-representations, i.e., by HR-matrices of minimal size. Our claim,
Theorem A, can therefore be reformulated as follows.

THEOREM B. The homomorphisms ¢:EY — n,(U) and {:E9 - n (0)
are isomorphisms, s = 0,1,2, ... .
3.2.  For small values of s the claim is easily checked.

Case U
s = 1: EY can be generated by one HR-matrix 4, = (i). Thus

f(xo,x1) = (xo+ix;) e U(1)

if x§ + x7 = 1. This is a generator of n,(U(1)) = n,(U) = Z.
s = 3: EYis generated by 3 HR-matrices

()

Xotix;  X,+ix;

Thus

f(x07x19x2>x3)=< >ESU(2)

—X,+tixX; Xo—ix,

3

if Y} x? = 1. This is a generator of‘n3(SU(2)) [=m5(S%)] = n,y(U) = Z.

0

Case O

s = 0: Empty set of HR-matrices, f(x) = (xo) € O(1)if x2 = 1, x, = =+ 1.
This is a generator of 1o(O(1)) = ny(0) = Z/2.

s = 1: E9is generated by one HR-matrix A = < 1 1>. Thus

S0, x;) = ( Yoo

*Xl xO

) e SO(2)
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if x§ + x{ = 1. This is a generator of ©,(SO(2)) = Z; as a map S! — SO(3)
it is a generator of m,(SO(3)) = =,(0) = Z/2.
's = 3: EYis generated by three 4 x 4 HR-matrices which yield

f(xo,X1,%,,%x3) = — X1 Xog X3 —Xx, \€S04)

3
if > x? = 1. This is a map S* — SO(4) which is well-known to become,
0

under SO(4) — SO(5), a generator of n5(SO(5)) = n4(0) = Z.

3.3. The proof of Theorem B becomes very simple if ¢ and  are turned
into ring homomorphisms EY — n,(U) = @ ny(U) (n_, = Z generated by
-1

the ring unit) and EJ — n,(0). For this purpose we have to define a
product in n (U) and =, (0), graded by s + 1 for m,. This is done by
extending the product introduced in 2.2 from linear maps f:S°* —- U or O
to arbitrary continuous maps.

Given a continuous map f:S° — U via U(n),

S* = {x = (Xg, X1, X;) ERTL  with [x]| = 1},

we extend it to fo:R*"! = M (C) by fox) = | x| f(—x—>, fo(0) = 0.

| x |
Similarly for g: S* — U via U(m), S' = {ye R*""! with | y| = 1}. Then

folx) ® E, E, ® go(y) )
—E,® 9,007 fo®»' ® E,
is a unitary 2nm x 2nm matrix for all (x, y) e R¥**"2 with [x |2 + | y]2 = 1

%and thus defines a map F:S*"'*! — U via U(2nm). Homotopic maps f,
or g respectively, yield homotopic F and we obtain a product F = fug

F(x, y) =(

Tcs(U) X nt(U) _\f) Tcs+t+1(U) .

%From the description of homotopy group addition in w,(U) as given above
lin 3.1 one easily checks that f U g is distributive. Thus m,(U) is a ring,
and so is m,(0), graded by s + 1 for x,(U) or 7,(0).

434 Bott periodicity is usually expressed in terms of complex and real
K-theory. We thus use the isomorphisms
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n(U) = K571 and  7,(0) = Kg(S™H7).

We recall that m,(U) = K(S**1) is obtained through i, (U) = KB, §°
where B*! is the unit ball {x e R°"%,| x| < 1}; the element corresponding
to f e m,(U) is given by two (trivial) C-vector bundles over Bs*1 identifiec
on S° by means of f. It will not come as a surprise that f ug above
corresponds to the u-product

KC(BS+1, SS) X KC(B1+1,St) N KC(BS+t+2, Ss+t+1)

given by the external tensor product of bundles. Indeed the map f U ¢
— F:S$s*'*1 5 U via U(2mnm) can be interpreted as follows: One decom
poses SFITL < RSTIT2 (coordinates Xg, Xy, . Xgs Vo, V1o Ve With [ X7

1 :
+ |y|?=1) into {] x|? <%,|y|2 25} homeomorphic to B*™! x S anc

{Ix]? > %, |y|? < 5} homeomorphic to §* x B'*!; the map F is

I

(f(X)®Em __0 ) on Ssx(O),i.e.y- O,'Xl—-—l,
0 fx)" ® E,

( 0__ En®g(y)> on (0) x Shiex=0,|y]=1.

Under K(BS*Y, §5) = K(S°*!) one then has a graded ring structure i1
@D Izc(SS“) isomorphic to m(U). According to the Bott periodicity theoren
-1

(see [K], p. 123) this ring is the polynomial ring Z[a] generated By the
generator of K(S?); ie, m(U) is the polynomial ring generated by th
generator a of m,(U).

Similarly, n,(O) 1s the commutative ring with generators b, e my(O
by € n4(0), b,emn,(0) with relations 2b, = 0, b3 = 0, b3 = 4b, ([K
p. 156-157).

To prove Theorem B we therefore only have to show:

Case U. p,; € EY is mapped by ¢ to a € n,(U).
Case 0. o©,€ EJ is mapped by \ to by € 15(0) and o3 € E§ to by € 1140
This has already been done in 3.2.
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