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The values of d° follow immediately from the Is and the d^. The values

n0 for the case 0, as given in the Introduction, are the df.

2. The reduced s-representation ring

2.1. For all s ^ 0 the group Gs is the subgroup of Gs + 1 obtained by

omitting the generator as+1; let hs: Gs Gs+1 be the embedding homo-

morphism. Via hs we can restrict an s-representation of Gs + 1 to Gs, which

in terms of HR-matrices means omitting As+1.
Let hf:Ds+l^>Ds be the corresponding homomorphism of Gro-

thendieck groups, and Ff D^/hfDus+ 1 the "reduced" groups; similarly
Ef Df/hf D°+1. They can easily be computed by means of the characters

of s-representations, as follows.

For Q and D the character of an irreducible unitary s-representation
is 0 except on 1 and s. For C and K it is ^ 0 on all 4 elements; on the

essential generator (^s) of C it is + i or — i for the two inequivalent
representations, and + 1 or — 1 in the case of K. For Gs, s even, we
infer from the table (2) that the character is 0 except on 1, s. For Gs,

s odd, the character is 0 except on 1, s and two further elements z, sz;
on these the two inequivalent s-representations differ just by the sign of the
character.

If 5 is even, d^+1 df 2s/2; thus the restriction of an irreducible
s-representation must be irreducible, whence hf D^+1 Ef 0. If s is

odd, d^+i 2dvs 2(s+1)/2; thus the restriction is the sum of two irreducible
s-representations, and since the character is 0 (except on 1, s) these two
must be inequivalent. Therefore hfD^+1 is the "diagonal" of Z © Z,
and Ef Z; its generator ps is represented by either of the two inequivalent
irreducible s-representations of Gs, — ps by the other one.

In the orthogonal case the Ef are computed similarly from (3). Since
d° 2 and d° - 1, the restriction from D° to D% yields twice the
generator, and E% Z/2; the same argument holds for s 0 mod 8,

df+1 2d°. Since d°2 4 and d° 2, we get E° Z/2. From
^3 d2 4 we get E2 0. As for 5 3, the character argument shows
that h*D° diagonal of D?( Z®Z), and E% Z. For s 4, 5, 6 the
dimensions d°+1 df show that E% E° E° 0. For s 7, the
character argument yields D% diagonal of £>^( Z®Z), and Z.
Finally one has, for all s, Ef+8 Ef.
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These results are summarized in the table

(4) 5 0 1 2 3 4 5 6 7 8 9

0 Z 0 z 0 z 0 z 0 z

E? Z/2 Z/2 0 z 0 0 0 z Z/2 Z/2

According to the Bott periodicity theorems the above table is just that
of the ns(U) and ns(0\ s 0,1, 2,.... Before studying the relation as stated
in Theorem A we establish product structures in the reduced Grothendieck

groups of s-representations, i.e., of HR-matrices.

2.2. We consider HR-matrices A1,A2,As e U(n) and put, for

x (x0, x1,..., xs) eRs+1

and A0 En (n x n unit matrix)

fix)X XJAJ
0

For all x with |x| 1, /(x) is a unitary matrix: this is, as mentioned
in the Introduction, precisely the meaning of the HR-matrix relations (1).

Let further B1,B2,..., Bt e U(m) be HR-matrices, and for

y (y0,yi, -,yt)e r,+1, b0

tg(y)X ykBk ;

0

g(y) e U(m) for all y with | y | 1. We define F by

m /W ® Em En® g{y)
F(x, y)

En ® g(y) T f(x) T

One immediately checks that F(x, y)FT(x, y) (|x|2 + |y|2)F2nm- Thus F(x, y)

e U(2nm) for all (xj)eRs+t + 2 with |x|2 + |y|2 l. Since the coefficient
matrix of x0 is E2nm the coefficient matrices of xl5..., xs, y0,..., yt constitute
a set of s + t + 1 HR-matrices e U(2nm). They are, explicitly,

(5)
Aj®Em 0 WO Enm\ 0 En

0 — Aj (g) EmJ \- Enm 0 J \En <g) Bk 0

with j 1,..., s and km 1,..., t. In other words, we have a product of
s-representations of Gs and Gt
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Since addition in is by the direct sum of s-representations this product
is clearly distributive. Associativity (up to equivalence) is easily checked. We

00

thus get a ring structure in D ^ © D f ; we have added the term DlL1 — Z
-1

generated by the ring unit. The ring is graded if the grading is by
s + 1 for Ds.

From the HR-matrices (5) of the product one notes that if one of the two
factors is restricted from so is the product; i.e., h*D% is a (graded)
ideal in and we get a (graded) ring structure in D^/h^D^ E%.

The same procedure yields, of course, a (graded) ring structure in
00

E° © Ef, with grading 5+1 for Ef. In 2.3 and 2.4 below these
S — 1

rings are described explicitly.

Remark 2.1. An easy computation shows that the rings E| and E J

are anticommutative with respect to the grading, i.e., commutative except for
the factor (— l)(s+1) (r + 1). This will not really be used since the E% and
Ef are all 0, Z or Z/2. We just note that in the case Z, with generator
ps, — ps is given by the other equivalence class of irreducible ^representations,

see 2.1.

2.3. The ring E^.
The generator ps of E given by an irreducible unitary 8-representation

of Gs, has degree 2S/1 if 5 is even, 2(s_1)/2 if 5 is odd. The product
psp has degree

2(s+t+2)/2 jf s and t are even

2(s + f+ l)/2 s js eyen? t or yiCe_yersa

2(s+t)/2 ft s and t are odd

Thus, unless both s and t are even, the product is irreducible, i.e.,
PsPr i Ps+f + i- After choice of pj e E\ we can choose p3 p2?
P5 P1P3 P3P1 Pi, -, and for all odd 5 2r - 1, ps p\; for even

Evs 0.

Proposition 2.2. The product with p^E" is an isomorphism Evs
E%+ 2 for all 5. For odd s 21 — 1 we choose

P21-1 — Pi, I 1, 2, 3,...
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Theorem 2.3. E^ is the polynomial ring Z[p1].

2.4. The ring E°.
We denote by gs the generator of Ef 0 if s 2, 4, 5, 6 modulo 8;

determined up to sign if s 3, 7 modulo 8 where Ef Z).
The generator p7 p*) e E% can be given by a real s-representation

of degree 8 which we can use as generator a7 e E°. The ring homo-
morphism ®: E° -> induced by the embedding 0 -> U, 0(a7) p79 is

thus an isomorphism F7 F7. In F J the degree of a7aseEs°+8 is

16J f d?+8. Hence g7gs is irreducible, i.e., + gs + 8 for all s. In particular

we can choose a15 a7, a23 cr7,..., u8r-1 a7.

Proposition 2.4. The isomorphism E° Ef+8 can be given by the

product with a7 e E °.

Proposition 2.5. a7E£7 generates a subring of EJ which is the

polynomial ring Z[a7].
We further note that <j3<=E° is mapped by <D to 2p3e£3. From

0(a3) 4p3 4p7 0(4a7) we infer that a3 4a7. As for g0eE%,
it is of degree 1 and order 2, and aje£f is of degree 2 and order 2,

i.e., Qq g1. Of course g I 0.

In summary :

Theorem 2.6. E° is the commutative ring, graded by s + 1 for
generated by a0,a3,a7 with the only relations 2g0 0, g I 0,

cr§ 4ct7

3. The homotopy groups of U and 0

3.1. We will deal explicitly with the unitary case. The orthogonal case

can be treated in almost exactly the same way; any additional arguments
will be mentioned wherever necessary.

In the Introduction 0.1 we associated with a set of s unitary n x n

HR-matrices, i.e., with an s-representation of Gs, a map / : Ss -> U of the

s-sphere Ss c= Rs+1 into the infinite unitary group U via U(n). Since

conjugation is homo topic to the identity, equivalent representations yield homo-

topic maps / (in the orthogonal case, we have to observe that conjugation
can be made with a matrix from the identity component). The map
(j>: Ds ns(U) thus obtained is a homomorphism; indeed, homotopy group
addition of / and /' in ns(U(n)) can be replaced by multiplication in


	2. The reduced ε-representation ring

