**Zeitschrift:** L'Enseignement Mathématique Herausgeber: Commission Internationale de l'Enseignement Mathématique **Band:** 35 (1989) **Heft:** 1-2: L'ENSEIGNEMENT MATHÉMATIQUE Artikel: HURWITZ-RADON MATRICES AND PERIODICITY MODULO 8 Autor: Eckmann, Beno **Kapitel:** 2. The reduced -representation ring **DOI:** https://doi.org/10.5169/seals-57365 ### Nutzungsbedingungen Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise. ### Conditions d'utilisation L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u> #### Terms of use The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice. **Download PDF: 21.05.2025** ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch The values of $d_s^O$ follow immediately from the $I_s$ and the $d_s^U$ . The values $n_0$ for the case O, as given in the Introduction, are the $d_s^O$ . ### 2. The reduced ε-representation ring 2.1. For all $s \ge 0$ the group $G_s$ is the subgroup of $G_{s+1}$ obtained by omitting the generator $a_{s+1}$ ; let $h_s: G_s \to G_{s+1}$ be the embedding homomorphism. Via $h_s$ we can restrict an $\varepsilon$ -representation of $G_{s+1}$ to $G_s$ , which in terms of HR-matrices means omitting $A_{s+1}$ . Let $h_s^*: D_{s+1}^U \to D_s^U$ be the corresponding homomorphism of Grothendieck groups, and $E_s^U = D_s^U/h_s^*D_{s+1}^U$ the "reduced" groups; similarly $E_s^O = D_s^O/h_s^*D_{s+1}^O$ . They can easily be computed by means of the characters of $\varepsilon$ -representations, as follows. For Q and D the character of an irreducible unitary $\varepsilon$ -representation is 0 except on 1 and $\varepsilon$ . For C and K it is $\neq 0$ on all 4 elements; on the essential generator ( $\neq \varepsilon$ ) of C it is +i or -i for the two inequivalent representations, and +1 or -1 in the case of K. For $G_s$ , s even, we infer from the table (2) that the character is 0 except on 1, $\varepsilon$ . For $G_s$ , s odd, the character is 0 except on 1, $\varepsilon$ and two further elements z, $\varepsilon z$ ; on these the two inequivalent $\varepsilon$ -representations differ just by the sign of the character. If s is even, $d_{s+1}^U = d_s^U = 2^{s/2}$ ; thus the restriction of an irreducible $\varepsilon$ -representation must be irreducible, whence $h_s^* D_{s+1}^U = D_s^U$ , $E_s^U = 0$ . If s is odd, $d_{s+1}^U = 2d_s^U = 2^{(s+1)/2}$ ; thus the restriction is the sum of two irreducible $\varepsilon$ -representations, and since the character is 0 (except on 1, $\varepsilon$ ) these two must be inequivalent. Therefore $h_s^* D_{s+1}^U$ is the "diagonal" of $D_s^U = \mathbf{Z} \oplus \mathbf{Z}$ , and $E_s^U = \mathbf{Z}$ ; its generator $\rho_s$ is represented by either of the two inequivalent irreducible $\varepsilon$ -representations of $G_s$ , $-\rho_s$ by the other one. In the orthogonal case the $E_s^O$ are computed similarly from (3). Since $d_1^O = 2$ and $d_0^O = 1$ , the restriction from $D_1^O$ to $D_0^O$ yields twice the generator, and $E_0^O = \mathbb{Z}/2$ ; the same argument holds for $s \equiv 0 \mod 8$ , $d_{s+1}^O = 2d_s^O$ . Since $d_2^O = 4$ and $d_1^O = 2$ , we get $E_1^O = \mathbb{Z}/2$ . From $d_3^O = d_2^O = 4$ we get $E_2^O = 0$ . As for s = 3, the character argument shows that $h_3^*D_4^O = \text{diagonal of } D_3^O (=\mathbb{Z} \oplus \mathbb{Z})$ , and $E_3^O = \mathbb{Z}$ . For s = 4, 5, 6 the dimensions $d_{s+1}^O = d_s^O$ show that $d_s^O = d_s^O = 0$ . For $d_s^O = 0$ show that $d_s^O = d_s^O = 0$ . For $d_s^O = 0$ show that $d_s^O = d_s^O = 0$ . For $d_s^O = 0$ show that $d_s^O = d_s^O = 0$ . For $d_s^O = 0$ show that $d_s^O = d_s^O = 0$ show that $d_s^O = d_s^O = 0$ . Finally one has, for all $d_s^O = d_s^O = 0$ . These results are summarized in the table According to the Bott periodicity theorems the above table is just that of the $\pi_s(U)$ and $\pi_s(O)$ , s=0,1,2,... Before studying the relation as stated in Theorem A we establish product structures in the reduced Grothendieck groups of $\varepsilon$ -representations, i.e., of HR-matrices. ## 2.2. We consider HR-matrices $A_1, A_2, ..., A_s \in U(n)$ and put, for $$x = (x_0, x_1, ..., x_s) \in \mathbf{R}^{s+1}$$ and $A_0 = E_n (n \times n \text{ unit matrix})$ $$f(x) = \sum_{j=0}^{s} x_{j} A_{j}.$$ For all x with |x| = 1, f(x) is a unitary matrix: this is, as mentioned in the Introduction, precisely the meaning of the HR-matrix relations (1). Let further $B_1$ , $B_2$ , ..., $B_t \in U(m)$ be HR-matrices, and for $$y = (y_0, y_1, ..., y_t) \in \mathbf{R}^{t+1}, B_0 = E_m,$$ $$g(y) = \sum_{k=0}^{t} y_k B_k;$$ $g(y) \in U(m)$ for all y with |y| = 1. We define F by $$F(x, y) = \begin{pmatrix} f(x) \otimes E_m & E_n \otimes g(y) \\ -E_n \otimes \overline{g(y)}^T & \overline{f(x)}^T \otimes E_m \end{pmatrix}.$$ One immediately checks that $F(x, y)\bar{F}^T(x, y) = (|x|^2 + |y|^2)E_{2nm}$ . Thus $F(x, y) \in U(2nm)$ for all $(x, y) \in \mathbb{R}^{s+t+2}$ with $|x|^2 + |y|^2 = 1$ . Since the coefficient matrix of $x_0$ is $E_{2nm}$ the coefficient matrices of $x_1, ..., x_s, y_0, ..., y_t$ constitute a set of s + t + 1 HR-matrices $\in U(2nm)$ . They are, explicitly, $$(5) \quad \begin{pmatrix} A_j \otimes E_m & 0 \\ 0 & -A_j \otimes E_m \end{pmatrix}, \begin{pmatrix} 0 & E_{nm} \\ -E_{nm} & 0 \end{pmatrix}, \begin{pmatrix} 0 & E_n \otimes B_k \\ E_n \otimes B_k & 0 \end{pmatrix}$$ with j=1,...,s and k=1,...,t. In other words, we have a product of $\varepsilon$ -representations of $G_s$ and $G_t$ $$D_s^U \times D_t^U \stackrel{\circ}{\to} D_{s+t+1}^U$$ . Since addition in $D_s^U$ is by the direct sum of $\varepsilon$ -representations this product is clearly distributive. Associativity (up to equivalence) is easily checked. We thus get a ring structure in $D_*^U = \bigoplus_{-1}^{\infty} D_s^U$ ; we have added the term $D_{-1}^U = \mathbf{Z}$ generated by the ring unit. The ring $D_*^U$ is graded if the grading is by s+1 for $D_s$ . From the HR-matrices (5) of the product one notes that if one of the two factors is restricted from $D_*^U$ so is the product; i.e., $h*D_*^U$ is a (graded) ideal in $D_*^U$ , and we get a (graded) ring structure in $D_*^U/h*D_*^U = E_*^U$ . The same procedure yields, of course, a (graded) ring structure in $E_*^O = \bigoplus_{s=-1}^{\infty} E_s^O$ , with grading s+1 for $E_s^O$ . In 2.3 and 2.4 below these rings are described explicitly. Remark 2.1. An easy computation shows that the rings $E_*^U$ and $E_*^O$ are anticommutative with respect to the grading, i.e., commutative except for the factor $(-1)^{(s+1)(t+1)}$ . This will not really be used since the $E_s^U$ and $E_s^O$ are all 0, $\mathbb{Z}$ or $\mathbb{Z}/2$ . We just note that in the case $\mathbb{Z}$ , with generator $\rho_s$ , $-\rho_s$ is given by the other equivalence class of irreducible $\varepsilon$ -representations, see 2.1. # 2.3. The ring $E_*^U$ . The generator $\rho_s$ of $E_s^U$ , given by an irreducible unitary $\epsilon$ -representation of $G_s$ , has degree $2^{s/2}$ if s is even, $2^{(s-1)/2}$ if s is odd. The product $\rho_s \rho_t \in E_{s+t+1}^U$ has degree $$2^{(s+t+2)/2}$$ if $s$ and $t$ are even, $2^{(s+t+1)/2}$ if $s$ is even, $t$ odd, or vice-versa, $2^{(s+t)/2}$ if $s$ and $t$ are odd. Thus, unless both s and t are even, the product is irreducible, i.e., $\rho_s \rho_t = \pm \rho_{s+t+1}$ . After choice of $\rho_1 \in E_1^U$ we can choose $\rho_3 = \rho_1^2$ , $\rho_5 = \rho_1 \rho_3 = \rho_3 \rho_1 = \rho_1^3$ , ..., and for all odd s = 2r - 1, $\rho_s = \rho_1^r$ ; for even $s, E_s^U = 0$ . PROPOSITION 2.2. The product with $\rho_1 \in E_1^U$ is an isomorphism $E_s^U \cong E_{s+2}^U$ for all s. For odd s=2l-1 we choose $$\rho_{2l-1} = \rho_1^l, l = 1, 2, 3, \dots$$ Theorem 2.3. $E_*^U$ is the polynomial ring $\mathbf{Z}[\rho_1]$ . # 2.4. The ring $E_*^o$ . We denote by $\sigma_s$ the generator of $E_s^o$ (= 0 if $s \equiv 2, 4, 5, 6$ modulo 8; determined up to sign if $s \equiv 3, 7$ modulo 8 where $E_s^o = \mathbf{Z}$ ). The generator $\rho_7$ (= $\rho_1^4$ ) $\in E_7^U$ can be given by a real $\epsilon$ -representation of degree 8 which we can use as generator $\sigma_7 \in E_7^O$ . The ring homomorphism $\Phi: E_*^O \to E_*^U$ induced by the embedding $O \to U$ , $\Phi(\sigma_7) = \rho_7$ , is thus an isomorphism $E_7^O \cong E_7^U$ . In $E_*^O$ the degree of $\sigma_7 \sigma_s \in E_{s+8}^O$ is $16d_s^O = d_{s+8}^O$ . Hence $\sigma_7 \sigma_s$ is irreducible, i.e., $= \pm \sigma_{s+8}$ for all s. In particular we can choose $\sigma_{15} = \sigma_7^2$ , $\sigma_{23} = \sigma_7^3$ , ..., $\sigma_{8r-1} = \sigma_7^r$ . Proposition 2.4. The isomorphism $E_s^o \cong E_{s+8}^o$ can be given by the product with $\sigma_7 \in E_7^o$ . PROPOSITION 2.5. $\sigma_7 \in E_7^o$ generates a subring of $E_*^o$ which is the polynomial ring $\mathbf{Z}[\sigma_7]$ . We further note that $\sigma_3 \in E_3^0$ is mapped by $\Phi$ to $2\rho_3 \in E_3^U$ . From $\Phi(\sigma_3^2) = 4\rho_3^2 = 4\rho_7 = \Phi(4\sigma_7)$ we infer that $\sigma_3^2 = 4\sigma_7$ . As for $\sigma_0 \in E_0^0$ , it is of degree 1 and order 2, and $\sigma_0^2 \in E_1^0$ is of degree 2 and order 2, i.e., $\sigma_0^2 = \sigma_1$ . Of course $\sigma_0^3 = 0$ . In summary: Theorem 2.6. $E_*^o$ is the commutative ring, graded by s+1 for $E_s^o$ , generated by $\sigma_0, \sigma_3, \sigma_7$ with the only relations $2\sigma_0 = 0, \sigma_0^3 = 0, \sigma_3^2 = 4\sigma_7$ . ### 3. The homotopy groups of U and O 3.1. We will deal explicitly with the unitary case. The orthogonal case can be treated in almost exactly the same way; any additional arguments will be mentioned wherever necessary. In the Introduction 0.1 we associated with a set of s unitary $n \times n$ HR-matrices, i.e., with an $\varepsilon$ -representation of $G_s$ , a map $f: S^s \to U$ of the s-sphere $S^s \subset \mathbf{R}^{s+1}$ into the infinite unitary group U via U(n). Since conjugation is homotopic to the identity, equivalent representations yield homotopic maps f (in the orthogonal case, we have to observe that conjugation can be made with a matrix from the identity component). The map $\phi: D_s^U \to \pi_s(U)$ thus obtained is a homomorphism; indeed, homotopy group addition of f and f' in $\pi_s(U(n))$ can be replaced by multiplication in