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computed; they turn out to be isomorphic to m,(U) and 7, (0) respectively.
Moreover a product is defined in the direct sum of the EJ(EY) turning
it into a graded ring EY(E9). The claim of Theorem A is proved in
Section 3; we show that the maps ¢: EY — m,(U), V: E9 — 1, (0) given
by the f, of 0.1 are isomorphisms. Using the product structure in m(U)
and m,(0) known from K-theory the proof reduces to simple verifications
in low dimensions. The symplectic case is dealt with in Section 4. In
Section 5 we make a remark concerning the “linearization phenomenon”
for the homotopy groups of U, O and Sp.

1. THE GROUPS Gy AND THEIR REPRESENTATIONS

1.1. We will denote throughout by G, the group given by the presentation

2 2 . _ .
Gs = <& dy1; Clslﬁ = 1> aj = & ajak = Sakaja J:k - 1: 27 ey 85 ] # k> .

Clearly any set A4, .., A, of HR-matrices yields a (unitary or orthogonal)
representation of G, of degree n by e— —E, aj—>A4;, j=1,2,..,s.
Conversely a representation of G, with ¢ — — E, in short an e-representation,
yields a set of s HR-matrices. For the elementary properties of G, and
its representations we refer to [E]. We just recall that the order of G;
is 2571 that ¢ is central, and that the irreducible unitary e-representations
of G, are of degree 2% if s is even (one equivalence class), of degree
267172 4f 5 is odd (two equivalence classes). These degrees are the minimal
values n, in case U. As for the case O, one has to recall that a repre-
sentation is equivalent to an orthogonal one if and only if it is equivalent
to a real (and orthogonal) one. Thus, unless an irreducible unitary e-repre-
sentation is already real, one has to add its conjugate-complex representation,
and the discussion of the various cases depending on s yields the minimal
values n, (case O) mentioned in the introduction; in other words, the degrees
of the irreducible orthogonal e-representations of G,.

1.2. A very simple and useful scheme for studying the groups G, and their
e-representations (and many other things) has been deviced by T.Y. Lam
and T. Smith [LS]. They have expressed the G, as products of very small
and well-known groups. Namely C = G, the cyclic group of order 4;
Q = G,, the quaternionic group of order 8; K, the Klein 4-group; and
D, the dihedral group of order 8. Although K and D do not belong to the
family G, they are of a similar nature and contain a distinguished central
element ¢ of order 2 (distinguished arbitrarily in K). “Product” here means
the central product obtained from the direct product by identifying the
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two ¢’s. The expression for the G, then is as follows, displaying a funda-
mental periodicity modulo 8:

@ s | o0 1 2 3 4 s 6 7 8 9

G, Z/2 C O QK QD D:C D’ DK D* D*C
and G,,3 = D*G

The tensor product of e-representations of two of the groups G,, K, D
is an e-representation of their product above, and all e-representations of
the G, can be obtained in that explicit way from those of C, Q, K, D,
which are well-known. This yields, in particular, the characters y and the
Schur indices I of the irreducible unitary e-representation (the Schur index
I = 1 if the representation is equivalent to a real one; if it is not,
I = — 1 if it is equivalent to the conjugate-complex one, I = 0 otherwise).
Both ¥ and I behave multiplicatively with respect to the central product.

s*

1.3. The Schur indices of the irreducible e-representations are: O for
C=G,,—1for Q =G,, and 1 for K and D (two equivalence classes
for K, one for D). This yields the Schur indices I, of the irreducible
g-representations of the G,, as listed in (2) below; we further list the
numbers vV of inequivalent unitary, and v? of inequivalent orthogonal
irreducible e-representations, and the respective degrees dY, d?. Note that I,
is periodic with period 8, and d? is periodic with period 8 in the sense
that d% ¢ = 16d9. Finally we include in the same table the Grothendieck
groups DY and D? of (equivalence classes of) irreducible e-representations
of G,, with respect to the direct sum of representations.

(3) s 0 1 2 3 4 5 6 7 8 9

DY 7 1072 7 1071 7 1072 717 1071 71 1DZL

D¢ Z Z Z 1012 Z Z Z 10712 7 Z
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The values of d? follow immediately from the I, and the d U. The values
n, for the case 0, as given in the Introduction, are the d g

2. THE REDUCED &-REPRESENTATION RING

2.1. For all s> 0 the group G, is the subgroup of G,,, obtained by
omitting the generator a,,;; let h;: G, —> Gy, be the embedding homo-
morphism. Via h, we can restrict an g-representation of Gy, ; to G, which
in terms of HR matrices means omitting A ;.

Let h*:DY. , - DY be the corresponding homomorphism of Gro-
thendieck groups, and EY = DY/h*DY,, the “reduced” groups; similarly
E® = D9h* DY, . They can easily be computed by means of the characters
of e-representations, as follows.

For Q and D the character of an irreducible unitary e-representation
is 0 except on 1 and & For C and K it is # 0 on all 4 elements; on the
essential generator (#¢) of C it is + i or — i for the two inequivalent
representations, and + 1 or — 1 in the case of K. For Gy, s even, we
infer from the table (2) that the character is 0 except on 1,& For G,
s odd, the character is O except on 1,& and two further elements z, ez;
on these the two inequivalent e-representations differ just by the sign of the
character.

If sis even, dY,, = dY = 29%; thus the restriction of an irreducible
e-representation must be irreducible, whence h*DY,, = DY, EV = 0. If 5 is
odd, d?,; = 2dY = 26*V/2; thus the restriction is the sum of two irreducible
e-representations, and since the character is 0 (except on 1, ¢) these two
must be inequivalent. Therefore h¥ DY, , is the “diagonal” of DY = Z @ Z,
and E/ = Z; its generator p, is represented by either of the two inequivalent
irreducible e-representations of G;, — p, by the other one.

In the orthogonal case the E? are computed similarly from (3). Since
d{ =2 and df = 1, the restriction from D¢ to D¢ yields twice the
generator, and E§ = Z/2; the same argument holds for s = 0 mod 8,
dJy, =2d2. Since df =4 and d? =2, we get E? = Z/2. From
d§ = df = 4 we get E§ = 0. As for s = 3, the character argument shows
that h¥ DY = diagonal of DS (=Z@Z), and E = Z. For s = 4,5, 6 the
dimensions d¢,; = d? show that E¢ = E¢ = E2 = 0. For s = 7, the
character argument yields h¥ D§ = diagonal of DY (=Z@Z), and E9 = Z.
Finally one has, for all s, E?, ¢ = E9.
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