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computed; they turn out to be isomorphic to ns(U) and ns(0) respectively.

Moreover a product is defined in the direct sum of the (E°) turning

it into a graded ring The claim of Theorem A is proved in

Section 3; we show that the maps c\>:E^ -> ns(U), y\f : Ef ns(0) given

by the fs of 0.1 are isomorphisms. Using the product structure in n*(U)
and 71^(0) known from K-theory the proof reduces to simple verifications

in low dimensions. The symplectic case is dealt with in Section 4. In

Section 5 we make a remark concerning the "linearization phenomenon"

for the homotopy groups of U, 0 and Sp.

1. The groups Gs and their representations

1.1. We will denote throughout by Gs the group given by the presentation

Gs <8,a1,..., as I s2 1, a) 8, a-}ak sakap j, k 1, 2,..., sJ / k>

Clearly any set A1,...,AS of HR-matrices yields a (unitary or orthogonal)
representation of Gs of degree n by s i—> — £, ajt-^Ajj j 1, 2,..., s.

Conversely a representation of Gs with s i-> — E, in short an s-representation,

yields a set of 5 HR-matrices. For the elementary properties of Gs and

its representations we refer to [E]. We just recall that the order of Gs

is 2s + 1, that 8 is central, and that the irreducible unitary s-representations
of Gs are of degree 2S/1 if 5 is even (one equivalence class), of degree
2(s-i)/2 jf s js (two equivalence classes). These degrees are the minimal
values n0 in case U. As for the case 0, one has to recall that a
representation is equivalent to an orthogonal one if and only if it is equivalent
to a real (and orthogonal) one. Thus, unless an irreducible unitary 8-repre-
sentation is already real, one has to add its conjugate-complex representation,
and the discussion of the various cases depending on s yields the minimal
values n0 (case 0) mentioned in the introduction ; in other words, the degrees
of the irreducible orthogonal s-representations of Gs.

1.2. A very simple and useful scheme for studying the groups Gs and their
s-representations (and many other things) has been deviced by T. Y. Lam
and T. Smith [LS]. They have expressed the Gs as products of very small
and well-known groups. Namely C G1§ the cyclic group of order 4;
Q G2, the quaternionic group of order 8; K, the Klein 4-group; and
D, the dihedral group of order 8. Although K and D do not belong to the
family Gs, they are of a similar nature and contain a distinguished central
element s of order 2 (distinguished arbitrarily in K). "Product" here means
the central product obtained from the direct product by identifying the
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two s's. The expression for the Gs then is as follows, displaying a
fundamental periodicity modulo 8 :

5" 0 1 2 3 4 5 6 7 8 9

Gs Z/2 C Q QK QD D2C D3 D3K D4 D4C

and Gs + 8 D4Gs

The tensor product of 8-representations of two of the groups Gs, K, D
is an e-representation of their product above, and all s-representations of
the Gs can be obtained in that explicit way from those of C, Q, K, D,

which are well-known. This yields, in particular, the characters % and the

Schur indices I of the irreducible unitary s-representation (the Schur index

I 1 if the representation is equivalent to a real one; if it is not,
I — 1 if it is equivalent to the conjugate-complex one, 1 0 otherwise).
Both % and I behave multiplicatively with respect to the central product.

1.3. The Schur indices of the irreducible s-representations are: 0 for
C G1, — 1 for Q G2, and 1 for K and D (two equivalence classes

for K, one for £>). This yields the Schur indices Is of the irreducible

s-representations of the Gs, as listed in (2) below; we further list the

numbers vf of inequivalent unitary, and vf of inequivalent orthogonal
irreducible s-representations, and the respective degrees ,d°. Note that Is

is periodic with period 8, and d° is periodic with period 8 in the sense

that df+8 16df. Finally we include in the same table the Grothendieck

groups Ds and D° of (equivalence classes of) irreducible s-representations
of Gs, with respect to the direct sum of representations.

5 0 1 2 3 4 5 6 7 8 9

If 1 0 -1 -1 -1 0 1 1 1 0

vuv s
1 2 1 2 1 2 1 2 1 2

V°v s
1 1 1 2 1 1 1 2 1 1

duu s
1 1 2 2 4 4 8 8 16 16

d°s 1 2 4 4 8 8 8 8 16 32

DVs Z z©z Z z©z Z z©z Z z©z Z z©z
D°s Z z Z z©z z z Z z©z z z
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The values of d° follow immediately from the Is and the d^. The values

n0 for the case 0, as given in the Introduction, are the df.

2. The reduced s-representation ring

2.1. For all s ^ 0 the group Gs is the subgroup of Gs + 1 obtained by

omitting the generator as+1; let hs: Gs Gs+1 be the embedding homo-

morphism. Via hs we can restrict an s-representation of Gs + 1 to Gs, which

in terms of HR-matrices means omitting As+1.
Let hf:Ds+l^>Ds be the corresponding homomorphism of Gro-

thendieck groups, and Ff D^/hfDus+ 1 the "reduced" groups; similarly
Ef Df/hf D°+1. They can easily be computed by means of the characters

of s-representations, as follows.

For Q and D the character of an irreducible unitary s-representation
is 0 except on 1 and s. For C and K it is ^ 0 on all 4 elements; on the

essential generator (^s) of C it is + i or — i for the two inequivalent
representations, and + 1 or — 1 in the case of K. For Gs, s even, we
infer from the table (2) that the character is 0 except on 1, s. For Gs,

s odd, the character is 0 except on 1, s and two further elements z, sz;
on these the two inequivalent s-representations differ just by the sign of the
character.

If 5 is even, d^+1 df 2s/2; thus the restriction of an irreducible
s-representation must be irreducible, whence hf D^+1 Ef 0. If s is

odd, d^+i 2dvs 2(s+1)/2; thus the restriction is the sum of two irreducible
s-representations, and since the character is 0 (except on 1, s) these two
must be inequivalent. Therefore hfD^+1 is the "diagonal" of Z © Z,
and Ef Z; its generator ps is represented by either of the two inequivalent
irreducible s-representations of Gs, — ps by the other one.

In the orthogonal case the Ef are computed similarly from (3). Since
d° 2 and d° - 1, the restriction from D° to D% yields twice the
generator, and E% Z/2; the same argument holds for s 0 mod 8,

df+1 2d°. Since d°2 4 and d° 2, we get E° Z/2. From
^3 d2 4 we get E2 0. As for 5 3, the character argument shows
that h*D° diagonal of D?( Z®Z), and E% Z. For s 4, 5, 6 the
dimensions d°+1 df show that E% E° E° 0. For s 7, the
character argument yields D% diagonal of £>^( Z®Z), and Z.
Finally one has, for all s, Ef+8 Ef.
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