

**Zeitschrift:** L'Enseignement Mathématique  
**Herausgeber:** Commission Internationale de l'Enseignement Mathématique  
**Band:** 35 (1989)  
**Heft:** 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

**Artikel:** HURWITZ-RADON MATRICES AND PERIODICITY MODULO 8  
**Autor:** Eckmann, Beno  
**Kapitel:** 0. Introduction  
**DOI:** <https://doi.org/10.5169/seals-57365>

#### **Nutzungsbedingungen**

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

#### **Terms of use**

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

**Download PDF:** 18.01.2026

**ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>**

# HURWITZ-RADON MATRICES AND PERIODICITY MODULO 8

by Beno ECKMANN

## 0. INTRODUCTION

0.1. We consider complex  $n \times n$  – matrices  $A_1, A_2, \dots, A_s$ , either all unitary (case  $U$ ) or all orthogonal (case  $O$ ); they are called Hurwitz-Radon matrices, in short HR-matrices, if

$$(1) \quad A_j^2 = -E, \quad A_j A_k + A_k A_j = 0, \quad j, k = 1, 2, \dots, s, \quad j \neq k;$$

$E$  or  $E_n$  denotes the unit matrix. Such matrices are well-known to exist, even with entries  $0, \pm 1, \pm i$  (case  $U$ ) or  $0, \pm 1$  (case  $O$ ). The possible values of  $n$  are multiples  $mn_0$ ,  $m = 1, 2, 3, \dots$  where in case  $U$ ,  $n_0 = 2^{s/2}$  if  $s$  is even,  $n_0 = 2^{(s-1)/2}$  if  $s$  is odd. In case  $O$ ,  $n_0 = 2^{(s-1)/2}$  if  $s \equiv 7 \pmod{8}$ ;  $n_0 = 2^{s/2}$  if  $s \equiv 0, 6$ ;  $n_0 = 2^{(s+1)/2}$  if  $s \equiv 1, 3, 5$ ; and  $n_0 = 2^{(s+2)/2}$  if  $s \equiv 2, 4 \pmod{8}$ .

If we put  $A_0 = E$  the relations (1) are equivalent to

$$f_s(x_0, x_1, \dots, x_s) = \sum_0^s x_j A_j$$

being a unitary, or orthogonal respectively, matrix for all real  $x_j$  with  $\sum_0^s x_j^2 = 1$ . Thus  $f_s$  can be considered as a map  $S^s \rightarrow U$  via  $U(n)$ , or  $S^s \rightarrow O$  via  $O(n)$  where  $U = \lim_{\rightarrow} U(k)$  and  $O = \lim_{\rightarrow} O(k)$  are the infinite unitary and orthogonal groups. We also write  $f_s$  for the homotopy class of that map,  $f_s \in \pi_s(U)$  or  $\pi_s(O)$ . We recall that by the Bott periodicity theorems these groups are cyclic or 0.

**THEOREM A.** *If  $A_1, A_2, \dots, A_s$  are HR-matrices of minimal size  $n = n_0(s)$  then  $f_s$  is a generator of  $\pi_s(U)$ , or  $\pi_s(O)$  respectively,  $s = 0, 1, 2, \dots$ .*

**Remark 1.** For  $s = 0$  (empty set of HR-matrices) we have  $f_0(x_0) = x_0(1)$ ,  $x_0^2 = 1$ ; i.e.,  $f_0(1) = (1)$ ,  $f_0(-1) = (-1)$ ,  $f_0: S^0 \rightarrow O(1) \rightarrow O$ . For  $s > 0$ ,  $f_s: S^s \rightarrow O$  clearly factors through  $SO(n) \rightarrow SO$  ( $U$  being connected, the analogue is irrelevant in the unitary case).

*Remark 2.* The problem originally solved by Hurwitz [H] and Radon [R] refers to the case  $O$ : One asks for complex bilinear forms  $z = f(x, y) = (\sum_0^s x_j A_j) y$ , where  $z = (z_1, \dots, z_n)$ ,  $y = (y_1, \dots, y_n)$ ,  $x = (x_0, \dots, x_s)$ , such that

$$z_1^2 + \dots + z_n^2 = (x_0^2 + \dots + x_s^2)(y_1^2 + \dots + y_n^2).$$

This means that  $\sum_0^s x_j A_j$  is orthogonal, i.e. leaves invariant  $\sum_0^n y_j^2$  except for the factor  $\sum_0^s x_j^2$ ; and thus, since we may assume  $A_0 = E$ , that  $A_1, \dots, A_s$  is a set of orthogonal HR-matrices in the sense of (1).

The case  $U$  refers to the analogous problem for the identity

$$|z_1|^2 + \dots + |z_n|^2 = (x_0^2 + \dots + x_s^2)(|y_1|^2 + \dots + |y_n|^2)$$

where  $y$  and  $z$  are complex, and  $x$  real.

0.2. The symplectic case: It is also of interest to consider HR-matrices, i.e. matrices fulfilling (1), which are symplectic. A linear combination  $\sum_0^s x_j A_j$  of  $2n \times 2n$ -matrices with  $A_0 = E$  is symplectic up to the factor  $\sum_0^s x_j^2$  if and only if  $A_1, \dots, A_s$  is a set of symplectic HR-matrices (Proposition 4.1).

We restrict attention to unitary symplectic matrices, i.e., to the group  $Sp(n) \subset U(2n)$ , and write  $Sp$  for the infinite symplectic group  $\lim_{\rightarrow} Sp(k)$ . With a set  $A_1, \dots, A_s$  of unitary symplectic HR-matrices, and  $A_0 = E$ , we associate the map  $f_s(x_0, x_1, \dots, x_s) = \sum_0^s x_j A_j$ ,  $\sum_0^s x_j^2 = 1$ , of  $S^s$  into  $Sp$  via  $Sp(n)$ ; we also write  $f_s$  for the corresponding element of  $\pi_s(Sp)$ , known to be 0 or cyclic.

**THEOREM A'.** *If  $A_1, \dots, A_s$  are unitary symplectic HR-matrices of minimal size  $2n_0$  then  $f_s$  is a generator of  $\pi_s(Sp)$ .*

0.3. The paper is organized as follows. We first recall (Section 1) that the HR-matrix problem can be formulated in terms of representations of certain finite group  $G_s$ ,  $s = 0, 1, 2, \dots$  introduced by the author [E], and discuss these representations using the elegant description of [LS]. In Section 2 the “reduced” Grothendieck groups of representations  $E_s^U$  and  $E_s^O$  are

computed; they turn out to be isomorphic to  $\pi_s(U)$  and  $\pi_s(O)$  respectively. Moreover a product is defined in the direct sum of the  $E_s^U(E_s^O)$  turning it into a graded ring  $E_*^U(E_*^O)$ . The claim of Theorem A is proved in Section 3; we show that the maps  $\phi: E_s^U \rightarrow \pi_s(U)$ ,  $\psi: E_s^O \rightarrow \pi_s(O)$  given by the  $f_s$  of 0.1 are isomorphisms. Using the product structure in  $\pi_*(U)$  and  $\pi_*(O)$  known from  $K$ -theory the proof reduces to simple verifications in low dimensions. The symplectic case is dealt with in Section 4. In Section 5 we make a remark concerning the “linearization phenomenon” for the homotopy groups of  $U$ ,  $O$  and  $Sp$ .

### 1. THE GROUPS $G_s$ AND THEIR REPRESENTATIONS

1.1. We will denote throughout by  $G_s$  the group given by the presentation

$$G_s = \langle \varepsilon, a_1, \dots, a_s \mid \varepsilon^2 = 1, a_j^2 = \varepsilon, a_j a_k = \varepsilon a_k a_j, j, k = 1, 2, \dots, s, j \neq k \rangle.$$

Clearly any set  $A_1, \dots, A_s$  of HR-matrices yields a (unitary or orthogonal) representation of  $G_s$  of degree  $n$  by  $\varepsilon \mapsto -E$ ,  $a_j \mapsto A_j$ ,  $j = 1, 2, \dots, s$ . Conversely a representation of  $G_s$  with  $\varepsilon \mapsto -E$ , in short an  $\varepsilon$ -representation, yields a set of  $s$  HR-matrices. For the elementary properties of  $G_s$  and its representations we refer to [E]. We just recall that the order of  $G_s$  is  $2^{s+1}$ , that  $\varepsilon$  is central, and that the irreducible unitary  $\varepsilon$ -representations of  $G_s$  are of degree  $2^{s/2}$  if  $s$  is even (one equivalence class), of degree  $2^{(s-1)/2}$  if  $s$  is odd (two equivalence classes). These degrees are the minimal values  $n_0$  in case  $U$ . As for the case  $O$ , one has to recall that a representation is equivalent to an orthogonal one if and only if it is equivalent to a real (and orthogonal) one. Thus, unless an irreducible unitary  $\varepsilon$ -representation is already real, one has to add its conjugate-complex representation, and the discussion of the various cases depending on  $s$  yields the minimal values  $n_0$  (case  $O$ ) mentioned in the introduction; in other words, the degrees of the irreducible orthogonal  $\varepsilon$ -representations of  $G_s$ .

1.2. A very simple and useful scheme for studying the groups  $G_s$  and their  $\varepsilon$ -representations (and many other things) has been devised by T. Y. Lam and T. Smith [LS]. They have expressed the  $G_s$  as products of very small and well-known groups. Namely  $C = G_1$ , the cyclic group of order 4;  $Q = G_2$ , the quaternionic group of order 8;  $K$ , the Klein 4-group; and  $D$ , the dihedral group of order 8. Although  $K$  and  $D$  do not belong to the family  $G_s$ , they are of a similar nature and contain a distinguished central element  $\varepsilon$  of order 2 (distinguished arbitrarily in  $K$ ). “Product” here means the central product obtained from the direct product by identifying the