

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 35 (1989)
Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: HURWITZ-RADON MATRICES AND PERIODICITY MODULO 8
Autor: Eckmann, Beno
DOI: <https://doi.org/10.5169/seals-57365>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 19.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

HURWITZ-RADON MATRICES AND PERIODICITY MODULO 8

by Beno ECKMANN

0. INTRODUCTION

0.1. We consider complex $n \times n$ – matrices A_1, A_2, \dots, A_s , either all unitary (case U) or all orthogonal (case O); they are called Hurwitz-Radon matrices, in short HR-matrices, if

$$(1) \quad A_j^2 = -E, \quad A_j A_k + A_k A_j = 0, \quad j, k = 1, 2, \dots, s, \quad j \neq k;$$

E or E_n denotes the unit matrix. Such matrices are well-known to exist, even with entries $0, \pm 1, \pm i$ (case U) or $0, \pm 1$ (case O). The possible values of n are multiples mn_0 , $m = 1, 2, 3, \dots$ where in case U , $n_0 = 2^{s/2}$ if s is even, $n_0 = 2^{(s-1)/2}$ if s is odd. In case O , $n_0 = 2^{(s-1)/2}$ if $s \equiv 7 \pmod{8}$; $n_0 = 2^{s/2}$ if $s \equiv 0, 6$; $n_0 = 2^{(s+1)/2}$ if $s \equiv 1, 3, 5$; and $n_0 = 2^{(s+2)/2}$ if $s \equiv 2, 4 \pmod{8}$.

If we put $A_0 = E$ the relations (1) are equivalent to

$$f_s(x_0, x_1, \dots, x_s) = \sum_0^s x_j A_j$$

being a unitary, or orthogonal respectively, matrix for all real x_j with $\sum_0^s x_j^2 = 1$. Thus f_s can be considered as a map $S^s \rightarrow U$ via $U(n)$, or $S^s \rightarrow O$ via $O(n)$ where $U = \lim_{\rightarrow} U(k)$ and $O = \lim_{\rightarrow} O(k)$ are the infinite unitary and orthogonal groups. We also write f_s for the homotopy class of that map, $f_s \in \pi_s(U)$ or $\pi_s(O)$. We recall that by the Bott periodicity theorems these groups are cyclic or 0.

THEOREM A. *If A_1, A_2, \dots, A_s are HR-matrices of minimal size $n = n_0(s)$ then f_s is a generator of $\pi_s(U)$, or $\pi_s(O)$ respectively, $s = 0, 1, 2, \dots$.*

Remark 1. For $s = 0$ (empty set of HR-matrices) we have $f_0(x_0) = x_0(1)$, $x_0^2 = 1$; i.e., $f_0(1) = (1)$, $f_0(-1) = (-1)$, $f_0: S^0 \rightarrow O(1) \rightarrow O$. For $s > 0$, $f_s: S^s \rightarrow O$ clearly factors through $SO(n) \rightarrow SO$ (U being connected, the analogue is irrelevant in the unitary case).

Remark 2. The problem originally solved by Hurwitz [H] and Radon [R] refers to the case O : One asks for complex bilinear forms $z = f(x, y) = (\sum_0^s x_j A_j) y$, where $z = (z_1, \dots, z_n)$, $y = (y_1, \dots, y_n)$, $x = (x_0, \dots, x_s)$, such that

$$z_1^2 + \dots + z_n^2 = (x_0^2 + \dots + x_s^2)(y_1^2 + \dots + y_n^2).$$

This means that $\sum_0^s x_j A_j$ is orthogonal, i.e. leaves invariant $\sum_0^n y_j^2$ except for the factor $\sum_0^s x_j^2$; and thus, since we may assume $A_0 = E$, that A_1, \dots, A_s is a set of orthogonal HR-matrices in the sense of (1).

The case U refers to the analogous problem for the identity

$$|z_1|^2 + \dots + |z_n|^2 = (x_0^2 + \dots + x_s^2)(|y_1|^2 + \dots + |y_n|^2)$$

where y and z are complex, and x real.

0.2. The symplectic case: It is also of interest to consider HR-matrices, i.e. matrices fulfilling (1), which are symplectic. A linear combination $\sum_0^s x_j A_j$ of $2n \times 2n$ -matrices with $A_0 = E$ is symplectic up to the factor $\sum_0^s x_j^2$ if and only if A_1, \dots, A_s is a set of symplectic HR-matrices (Proposition 4.1).

We restrict attention to unitary symplectic matrices, i.e., to the group $Sp(n) \subset U(2n)$, and write Sp for the infinite symplectic group $\lim_{\rightarrow} Sp(k)$. With a set A_1, \dots, A_s of unitary symplectic HR-matrices, and $A_0 = E$, we associate the map $f_s(x_0, x_1, \dots, x_s) = \sum_0^s x_j A_j$, $\sum_0^s x_j^2 = 1$, of S^s into Sp via $Sp(n)$; we also write f_s for the corresponding element of $\pi_s(Sp)$, known to be 0 or cyclic.

THEOREM A'. *If A_1, \dots, A_s are unitary symplectic HR-matrices of minimal size $2n_0$ then f_s is a generator of $\pi_s(Sp)$.*

0.3. The paper is organized as follows. We first recall (Section 1) that the HR-matrix problem can be formulated in terms of representations of certain finite group G_s , $s = 0, 1, 2, \dots$ introduced by the author [E], and discuss these representations using the elegant description of [LS]. In Section 2 the “reduced” Grothendieck groups of representations E_s^U and E_s^O are

computed; they turn out to be isomorphic to $\pi_s(U)$ and $\pi_s(O)$ respectively. Moreover a product is defined in the direct sum of the $E_s^U(E_s^O)$ turning it into a graded ring $E_*^U(E_*^O)$. The claim of Theorem A is proved in Section 3; we show that the maps $\phi: E_s^U \rightarrow \pi_s(U)$, $\psi: E_s^O \rightarrow \pi_s(O)$ given by the f_s of 0.1 are isomorphisms. Using the product structure in $\pi_*(U)$ and $\pi_*(O)$ known from K -theory the proof reduces to simple verifications in low dimensions. The symplectic case is dealt with in Section 4. In Section 5 we make a remark concerning the “linearization phenomenon” for the homotopy groups of U , O and Sp .

1. THE GROUPS G_s AND THEIR REPRESENTATIONS

1.1. We will denote throughout by G_s the group given by the presentation

$$G_s = \langle \varepsilon, a_1, \dots, a_s \mid \varepsilon^2 = 1, a_j^2 = \varepsilon, a_j a_k = \varepsilon a_k a_j, j, k = 1, 2, \dots, s, j \neq k \rangle.$$

Clearly any set A_1, \dots, A_s of HR-matrices yields a (unitary or orthogonal) representation of G_s of degree n by $\varepsilon \mapsto -E$, $a_j \mapsto A_j$, $j = 1, 2, \dots, s$. Conversely a representation of G_s with $\varepsilon \mapsto -E$, in short an ε -representation, yields a set of s HR-matrices. For the elementary properties of G_s and its representations we refer to [E]. We just recall that the order of G_s is 2^{s+1} , that ε is central, and that the irreducible unitary ε -representations of G_s are of degree $2^{s/2}$ if s is even (one equivalence class), of degree $2^{(s-1)/2}$ if s is odd (two equivalence classes). These degrees are the minimal values n_0 in case U . As for the case O , one has to recall that a representation is equivalent to an orthogonal one if and only if it is equivalent to a real (and orthogonal) one. Thus, unless an irreducible unitary ε -representation is already real, one has to add its conjugate-complex representation, and the discussion of the various cases depending on s yields the minimal values n_0 (case O) mentioned in the introduction; in other words, the degrees of the irreducible orthogonal ε -representations of G_s .

1.2. A very simple and useful scheme for studying the groups G_s and their ε -representations (and many other things) has been devised by T. Y. Lam and T. Smith [LS]. They have expressed the G_s as products of very small and well-known groups. Namely $C = G_1$, the cyclic group of order 4; $Q = G_2$, the quaternionic group of order 8; K , the Klein 4-group; and D , the dihedral group of order 8. Although K and D do not belong to the family G_s , they are of a similar nature and contain a distinguished central element ε of order 2 (distinguished arbitrarily in K). “Product” here means the central product obtained from the direct product by identifying the

two ε 's. The expression for the G_s then is as follows, displaying a fundamental periodicity modulo 8:

(2)	s	0	1	2	3	4	5	6	7	8	9	...
	G_s	$\mathbf{Z}/2$	C	Q	QK	QD	D^2C	D^3	D^3K	D^4	D^4C	...

and $G_{s+8} = D^4G_s$.

The tensor product of ε -representations of two of the groups G_s, K, D is an ε -representation of their product above, and all ε -representations of the G_s can be obtained in that explicit way from those of C, Q, K, D , which are well-known. This yields, in particular, the characters χ and the Schur indices I of the irreducible unitary ε -representation (the Schur index $I = 1$ if the representation is equivalent to a real one; if it is not, $I = -1$ if it is equivalent to the conjugate-complex one, $I = 0$ otherwise). Both χ and I behave multiplicatively with respect to the central product.

1.3. The Schur indices of the irreducible ε -representations are: 0 for $C = G_1$, -1 for $Q = G_2$, and 1 for K and D (two equivalence classes for K , one for D). This yields the Schur indices I_s of the irreducible ε -representations of the G_s , as listed in (2) below; we further list the numbers v_s^U of inequivalent unitary, and v_s^O of inequivalent orthogonal irreducible ε -representations, and the respective degrees d_s^U, d_s^O . Note that I_s is periodic with period 8, and d_s^O is periodic with period 8 in the sense that $d_{s+8}^O = 16d_s^O$. Finally we include in the same table the Grothendieck groups D_s^U and D_s^O of (equivalence classes of) irreducible ε -representations of G_s , with respect to the direct sum of representations.

(3)	s	0	1	2	3	4	5	6	7	8	9	...
	I_s	1	0	-1	-1	-1	0	1	1	1	0	...
	v_s^U	1	2	1	2	1	2	1	2	1	2	
	v_s^O	1	1	1	2	1	1	1	2	1	1	
	d_s^U	1	1	2	2	4	4	8	8	16	16	
	d_s^O	1	2	4	4	8	8	8	8	16	32	
	D_s^U	\mathbf{Z}	$\mathbf{Z} \oplus \mathbf{Z}$									
	D_s^O	\mathbf{Z}	\mathbf{Z}	\mathbf{Z}	$\mathbf{Z} \oplus \mathbf{Z}$	\mathbf{Z}	\mathbf{Z}	\mathbf{Z}	$\mathbf{Z} \oplus \mathbf{Z}$	\mathbf{Z}	\mathbf{Z}	

The values of d_s^O follow immediately from the I_s and the d_s^U . The values n_0 for the case O , as given in the Introduction, are the d_s^O .

2. THE REDUCED ε -REPRESENTATION RING

2.1. For all $s \geq 0$ the group G_s is the subgroup of G_{s+1} obtained by omitting the generator a_{s+1} ; let $h_s: G_s \rightarrow G_{s+1}$ be the embedding homomorphism. Via h_s we can restrict an ε -representation of G_{s+1} to G_s , which in terms of HR-matrices means omitting A_{s+1} .

Let $h_s^*: D_{s+1}^U \rightarrow D_s^U$ be the corresponding homomorphism of Grothendieck groups, and $E_s^U = D_s^U/h_s^* D_{s+1}^U$ the “reduced” groups; similarly $E_s^O = D_s^O/h_s^* D_{s+1}^O$. They can easily be computed by means of the characters of ε -representations, as follows.

For Q and D the character of an irreducible unitary ε -representation is 0 except on 1 and ε . For C and K it is $\neq 0$ on all 4 elements; on the essential generator ($\neq \varepsilon$) of C it is $+i$ or $-i$ for the two inequivalent representations, and $+1$ or -1 in the case of K . For G_s , s even, we infer from the table (2) that the character is 0 except on 1, ε . For G_s , s odd, the character is 0 except on 1, ε and two further elements $z, \varepsilon z$; on these the two inequivalent ε -representations differ just by the sign of the character.

If s is even, $d_{s+1}^U = d_s^U = 2^{s/2}$; thus the restriction of an irreducible ε -representation must be irreducible, whence $h_s^* D_{s+1}^U = D_s^U$, $E_s^U = 0$. If s is odd, $d_{s+1}^U = 2d_s^U = 2^{(s+1)/2}$; thus the restriction is the sum of two irreducible ε -representations, and since the character is 0 (except on 1, ε) these two must be inequivalent. Therefore $h_s^* D_{s+1}^U$ is the “diagonal” of $D_s^U = \mathbf{Z} \oplus \mathbf{Z}$, and $E_s^U = \mathbf{Z}$; its generator ρ_s is represented by either of the two inequivalent irreducible ε -representations of G_s , $-\rho_s$ by the other one.

In the orthogonal case the E_s^O are computed similarly from (3). Since $d_1^O = 2$ and $d_0^O = 1$, the restriction from D_1^O to D_0^O yields twice the generator, and $E_0^O = \mathbf{Z}/2$; the same argument holds for $s \equiv 0 \pmod{8}$, $d_{s+1}^O = 2d_s^O$. Since $d_2^O = 4$ and $d_1^O = 2$, we get $E_1^O = \mathbf{Z}/2$. From $d_3^O = d_2^O = 4$ we get $E_2^O = 0$. As for $s = 3$, the character argument shows that $h_3^* D_4^O$ = diagonal of $D_3^O (= \mathbf{Z} \oplus \mathbf{Z})$, and $E_3^O = \mathbf{Z}$. For $s = 4, 5, 6$ the dimensions $d_{s+1}^O = d_s^O$ show that $E_4^O = E_5^O = E_6^O = 0$. For $s = 7$, the character argument yields $h_7^* D_8^O$ = diagonal of $D_7^O (= \mathbf{Z} \oplus \mathbf{Z})$, and $E_7^O = \mathbf{Z}$. Finally one has, for all s , $E_{s+8}^O \cong E_s^O$.

These results are summarized in the table

(4)	s	0	1	2	3	4	5	6	7	8	9	...
E_s^U		0	\mathbf{Z}	0	\mathbf{Z}	0	\mathbf{Z}	0	\mathbf{Z}	0	\mathbf{Z}	
E_s^O		$\mathbf{Z}/2$	$\mathbf{Z}/2$	0	\mathbf{Z}	0	0	0	\mathbf{Z}	$\mathbf{Z}/2$	$\mathbf{Z}/2$	

According to the Bott periodicity theorems the above table is just that of the $\pi_s(U)$ and $\pi_s(O)$, $s = 0, 1, 2, \dots$. Before studying the relation as stated in Theorem A we establish product structures in the reduced Grothendieck groups of ε -representations, i.e., of HR-matrices.

2.2. We consider HR-matrices $A_1, A_2, \dots, A_s \in U(n)$ and put, for

$$x = (x_0, x_1, \dots, x_s) \in \mathbf{R}^{s+1}$$

and $A_0 = E_n$ ($n \times n$ unit matrix)

$$f(x) = \sum_0^s x_j A_j.$$

For all x with $|x| = 1$, $f(x)$ is a unitary matrix: this is, as mentioned in the Introduction, precisely the meaning of the HR-matrix relations (1).

Let further $B_1, B_2, \dots, B_t \in U(m)$ be HR-matrices, and for

$$y = (y_0, y_1, \dots, y_t) \in \mathbf{R}^{t+1}, \quad B_0 = E_m,$$

$$g(y) = \sum_0^t y_k B_k;$$

$g(y) \in U(m)$ for all y with $|y| = 1$. We define F by

$$F(x, y) = \begin{pmatrix} f(x) \otimes E_m & E_n \otimes g(y) \\ -E_n \otimes \overline{g(y)}^T & \overline{f(x)}^T \otimes E_m \end{pmatrix}.$$

One immediately checks that $F(x, y) \bar{F}^T(x, y) = (|x|^2 + |y|^2) E_{2nm}$. Thus $F(x, y) \in U(2nm)$ for all $(x, y) \in \mathbf{R}^{s+t+2}$ with $|x|^2 + |y|^2 = 1$. Since the coefficient matrix of x_0 is E_{2nm} the coefficient matrices of $x_1, \dots, x_s, y_0, \dots, y_t$ constitute a set of $s + t + 1$ HR-matrices $\in U(2nm)$. They are, explicitly,

$$(5) \quad \begin{pmatrix} A_j \otimes E_m & 0 \\ 0 & -A_j \otimes E_m \end{pmatrix}, \begin{pmatrix} 0 & E_{nm} \\ -E_{nm} & 0 \end{pmatrix}, \begin{pmatrix} 0 & E_n \otimes B_k \\ E_n \otimes B_k & 0 \end{pmatrix}$$

with $j = 1, \dots, s$ and $k = 1, \dots, t$. In other words, we have a product of ε -representations of G_s and G_t

$$D_s^U \times D_t^U \xrightarrow{\sim} D_{s+t+1}^U.$$

Since addition in D_s^U is by the direct sum of ε -representations this product is clearly distributive. Associativity (up to equivalence) is easily checked. We thus get a ring structure in $D_*^U = \bigoplus_{s=-1}^{\infty} D_s^U$; we have added the term $D_{-1}^U = \mathbf{Z}$ generated by the ring unit. The ring D_*^U is graded if the grading is by $s + 1$ for D_s .

From the HR-matrices (5) of the product one notes that if one of the two factors is restricted from D_*^U so is the product; i.e., $h*D_*^U$ is a (graded) ideal in D_*^U , and we get a (graded) ring structure in $D_*^U/h*D_*^U = E_*^U$.

The same procedure yields, of course, a (graded) ring structure in $E_*^O = \bigoplus_{s=-1}^{\infty} E_s^O$, with grading $s + 1$ for E_s^O . In 2.3 and 2.4 below these rings are described explicitly.

Remark 2.1. An easy computation shows that the rings E_*^U and E_*^O are anticommutative with respect to the grading, i.e., commutative except for the factor $(-1)^{(s+1)(t+1)}$. This will not really be used since the E_s^U and E_s^O are all 0, \mathbf{Z} or $\mathbf{Z}/2$. We just note that in the case \mathbf{Z} , with generator ρ_s , $-\rho_s$ is given by the other equivalence class of irreducible ε -representations, see 2.1.

2.3. The ring E_*^U .

The generator ρ_s of E_s^U , given by an irreducible unitary ε -representation of G_s , has degree $2^{s/2}$ if s is even, $2^{(s-1)/2}$ if s is odd. The product $\rho_s \rho_t \in E_{s+t+1}^U$ has degree

$$\begin{aligned} 2^{(s+t+2)/2} &\quad \text{if } s \text{ and } t \text{ are even,} \\ 2^{(s+t+1)/2} &\quad \text{if } s \text{ is even, } t \text{ odd, or vice-versa,} \\ 2^{(s+t)/2} &\quad \text{if } s \text{ and } t \text{ are odd.} \end{aligned}$$

Thus, unless both s and t are even, the product is irreducible, i.e., $\rho_s \rho_t = \pm \rho_{s+t+1}$. After choice of $\rho_1 \in E_1^U$ we can choose $\rho_3 = \rho_1^2$, $\rho_5 = \rho_1 \rho_3 = \rho_3 \rho_1 = \rho_1^3$, ..., and for all odd $s = 2r - 1$, $\rho_s = \rho_1^r$; for even s , $E_s^U = 0$.

PROPOSITION 2.2. *The product with $\rho_1 \in E_1^U$ is an isomorphism $E_s^U \cong E_{s+2}^U$ for all s . For odd $s = 2l - 1$ we choose*

$$\rho_{2l-1} = \rho_1^l, l = 1, 2, 3, \dots .$$

THEOREM 2.3. E_*^U is the polynomial ring $\mathbf{Z}[\rho_1]$.

2.4. THE RING E_*^O .

We denote by σ_s the generator of E_s^O ($= 0$ if $s \equiv 2, 4, 5, 6$ modulo 8; determined up to sign if $s \equiv 3, 7$ modulo 8 where $E_s^O = \mathbf{Z}$).

The generator ρ_7 ($= \rho_1^4 \in E_7^U$) can be given by a real ε -representation of degree 8 which we can use as generator $\sigma_7 \in E_7^O$. The ring homomorphism $\Phi: E_*^O \rightarrow E_*^U$ induced by the embedding $O \rightarrow U$, $\Phi(\sigma_7) = \rho_7$, is thus an isomorphism $E_7^O \cong E_7^U$. In E_*^O the degree of $\sigma_7 \sigma_s \in E_{s+8}^O$ is $16d_s^O = d_{s+8}^O$. Hence $\sigma_7 \sigma_s$ is irreducible, i.e., $= \pm \sigma_{s+8}$ for all s . In particular we can choose $\sigma_{15} = \sigma_7^2$, $\sigma_{23} = \sigma_7^3$, ..., $\sigma_{8r-1} = \sigma_7^r$.

PROPOSITION 2.4. The isomorphism $E_s^O \cong E_{s+8}^O$ can be given by the product with $\sigma_7 \in E_7^O$.

PROPOSITION 2.5. $\sigma_7 \in E_7^O$ generates a subring of E_*^O which is the polynomial ring $\mathbf{Z}[\sigma_7]$.

We further note that $\sigma_3 \in E_3^O$ is mapped by Φ to $2\rho_3 \in E_3^U$. From $\Phi(\sigma_3^2) = 4\rho_3^2 = 4\rho_7 = \Phi(4\sigma_7)$ we infer that $\sigma_3^2 = 4\sigma_7$. As for $\sigma_0 \in E_0^O$, it is of degree 1 and order 2, and $\sigma_0^2 \in E_1^O$ is of degree 2 and order 2, i.e., $\sigma_0^2 = \sigma_1$. Of course $\sigma_0^3 = 0$.

In summary:

THEOREM 2.6. E_*^O is the commutative ring, graded by $s+1$ for E_s^O , generated by $\sigma_0, \sigma_3, \sigma_7$ with the only relations $2\sigma_0 = 0$, $\sigma_0^3 = 0$, $\sigma_3^2 = 4\sigma_7$.

3. THE HOMOTOPY GROUPS OF U AND O

3.1. We will deal explicitly with the unitary case. The orthogonal case can be treated in almost exactly the same way; any additional arguments will be mentioned wherever necessary.

In the Introduction 0.1 we associated with a set of s unitary $n \times n$ HR-matrices, i.e., with an ε -representation of G_s , a map $f: S^s \rightarrow U$ of the s -sphere $S^s \subset \mathbf{R}^{s+1}$ into the infinite unitary group U via $U(n)$. Since conjugation is homotopic to the identity, equivalent representations yield homotopic maps f (in the orthogonal case, we have to observe that conjugation can be made with a matrix from the identity component). The map $\phi: D_s^U \rightarrow \pi_s(U)$ thus obtained is a homomorphism; indeed, homotopy group addition of f and f' in $\pi_s(U(n))$ can be replaced by multiplication in

$U(n)$; this is homotopic in $U(2n)$ to the map $\begin{pmatrix} f & 0 \\ 0 & f' \end{pmatrix}$, and on the other hand addition in D_s^U is defined through the direct sum of representations.

If the ε -representation is restricted from D_{s+1}^U , i.e., if the set of HR-matrices belongs to a set of $s+1$ HR-matrices, f extends to a map $S^{s+1} \rightarrow U$ and is thus nullhomotopic. The homomorphism ϕ therefore induces a homomorphism $E_s^U \rightarrow \pi_s(U)$, again written ϕ . The analogue $E_s^O \rightarrow \pi_s(O)$ will be denoted by ψ . The groups E_s^U and E_s^O are 0 or cyclic generated by irreducible ε -representations, i.e., by HR-matrices of minimal size. Our claim, Theorem A, can therefore be reformulated as follows.

THEOREM B. *The homomorphisms $\phi: E_s^U \rightarrow \pi_s(U)$ and $\psi: E_s^O \rightarrow \pi_s(O)$ are isomorphisms, $s = 0, 1, 2, \dots$.*

3.2. For small values of s the claim is easily checked.

Case U

$s = 1$: E_1^U can be generated by one HR-matrix $A_1 = (i)$. Thus

$$f(x_0, x_1) = (x_0 + ix_1) \in U(1)$$

if $x_0^2 + x_1^2 = 1$. This is a generator of $\pi_1(U(1)) \cong \pi_1(U) = \mathbf{Z}$.

$s = 3$: E_3^U is generated by 3 HR-matrices

$$A_1 = \begin{pmatrix} i & \\ & -i \end{pmatrix}, \quad A_2 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix}, \quad A_3 = \begin{pmatrix} & i \\ i & \end{pmatrix}.$$

Thus

$$f(x_0, x_1, x_2, x_3) = \begin{pmatrix} x_0 + ix_1 & x_2 + ix_3 \\ -x_2 + ix_3 & x_0 - ix_1 \end{pmatrix} \in SU(2)$$

if $\sum_0^3 x_j^2 = 1$. This is a generator of $\pi_3(SU(2)) [= \pi_3(S^3)] \cong \pi_3(U) = \mathbf{Z}$.

Case O

$s = 0$: Empty set of HR-matrices, $f(x_0) = (x_0) \in O(1)$ if $x_0^2 = 1$, $x_0 = \pm 1$. This is a generator of $\pi_0(O(1)) \cong \pi_0(O) = \mathbf{Z}/2$.

$s = 1$: E_1^O is generated by one HR-matrix $A_1 = \begin{pmatrix} & 1 \\ -1 & \end{pmatrix}$. Thus

$$f(x_0, x_1) = \begin{pmatrix} x_0 & x_1 \\ -x_1 & x_0 \end{pmatrix} \in SO(2)$$

if $x_0^2 + x_1^2 = 1$. This is a generator of $\pi_1(SO(2)) = \mathbf{Z}$; as a map $S^1 \rightarrow SO(3)$ it is a generator of $\pi_1(SO(3)) \cong \pi_1(O) = \mathbf{Z}/2$.

$s = 3$: E_3^O is generated by three 4×4 HR-matrices which yield

$$f(x_0, x_1, x_2, x_3) = \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ -x_1 & x_0 & x_3 & -x_2 \\ -x_2 & -x_3 & x_0 & x_1 \\ -x_3 & x_2 & -x_1 & x_0 \end{pmatrix} \in SO(4)$$

if $\sum_0^3 x_j^2 = 1$. This is a map $S^3 \rightarrow SO(4)$ which is well-known to become, under $SO(4) \rightarrow SO(5)$, a generator of $\pi_3(SO(5)) \cong \pi_3(O) = \mathbf{Z}$.

3.3. The proof of Theorem B becomes very simple if ϕ and ψ are turned into ring homomorphisms $E_*^U \rightarrow \pi_*(U) = \bigoplus_{-1}^{\infty} \pi_s(U)$ ($\pi_{-1} = \mathbf{Z}$ generated by the ring unit) and $E_*^O \rightarrow \pi_*(O)$. For this purpose we have to define a product in $\pi_*(U)$ and $\pi_*(O)$, graded by $s + 1$ for π_s . This is done by extending the product introduced in 2.2 from linear maps $f: S^s \rightarrow U$ or O to arbitrary continuous maps.

Given a continuous map $f: S^s \rightarrow U$ via $U(n)$,

$$S^s = \{x = (x_0, x_1, \dots, x_s) \in \mathbf{R}^{s+1} \text{ with } |x| = 1\},$$

we extend it to $f_0: \mathbf{R}^{s+1} \rightarrow M_n(\mathbf{C})$ by $f_0(x) = |x| f\left(\frac{x}{|x|}\right)$, $f_0(0) = 0$.

Similarly for $g: S^t \rightarrow U$ via $U(m)$, $S^t = \{y \in \mathbf{R}^{t+1} \text{ with } |y| = 1\}$. Then

$$F(x, y) = \begin{pmatrix} f_0(x) \otimes E_m & E_n \otimes g_0(y) \\ -E_n \otimes \overline{g_0(y)}^T & \overline{f_0(x)}^T \otimes E_m \end{pmatrix}$$

is a unitary $2nm \times 2nm$ matrix for all $(x, y) \in \mathbf{R}^{s+t+2}$ with $|x|^2 + |y|^2 = 1$ and thus defines a map $F: S^{s+t+1} \rightarrow U$ via $U(2nm)$. Homotopic maps f , or g respectively, yield homotopic F and we obtain a product $F = f \cup g$

$$\pi_s(U) \times \pi_t(U) \xrightarrow{\cup} \pi_{s+t+1}(U).$$

From the description of homotopy group addition in $\pi_s(U)$ as given above in 3.1 one easily checks that $f \cup g$ is distributive. Thus $\pi_*(U)$ is a ring, and so is $\pi_*(O)$, graded by $s + 1$ for $\pi_s(U)$ or $\pi_s(O)$.

3.4. Bott periodicity is usually expressed in terms of complex and real K -theory. We thus use the isomorphisms

$$\pi_s(U) \cong \tilde{K}_{\mathbf{C}}(S^{s+1}) \quad \text{and} \quad \pi_s(O) \cong \tilde{K}_{\mathbf{R}}(S^{s+1}).$$

We recall that $\pi_s(U) \cong \tilde{K}_{\mathbf{C}}(S^{s+1})$ is obtained through $\pi_s(U) \cong K_{\mathbf{C}}(B^{s+1}, S^s)$ where B^{s+1} is the unit ball $\{x \in \mathbf{R}^{s+1}, |x| \leq 1\}$; the element corresponding to $f \in \pi_s(U)$ is given by two (trivial) \mathbf{C} -vector bundles over B^{s+1} , identified on S^s by means of f . It will not come as a surprise that $f \cup g$ above corresponds to the \cup -product

$$K_{\mathbf{C}}(B^{s+1}, S^s) \times K_{\mathbf{C}}(B^{t+1}, S^t) \rightarrow K_{\mathbf{C}}(B^{s+t+2}, S^{s+t+1})$$

given by the external tensor product of bundles. Indeed the map $f \cup g = F: S^{s+t+1} \rightarrow U$ via $U(2nm)$ can be interpreted as follows: One decomposes $S^{s+t+1} \subset \mathbf{R}^{s+t+2}$ (coordinates $x_0, x_1, \dots, x_s, y_0, y_1, \dots, y_t$ with $|x|^2 + |y|^2 = 1$) into $\{|x|^2 \leq \frac{1}{2}, |y|^2 \geq \frac{1}{2}\}$ homeomorphic to $B^{s+1} \times S^t$ and $\{|x|^2 \geq \frac{1}{2}, |y|^2 \leq \frac{1}{2}\}$ homeomorphic to $S^s \times B^{t+1}$; the map F is

$$\begin{aligned} \begin{pmatrix} f(x) \otimes E_m & 0 \\ 0 & \overline{f(x)}^T \otimes E_m \end{pmatrix} & \quad \text{on} \quad S^s \times (0), \text{ i.e. } y = 0, |x| = 1, \\ \begin{pmatrix} 0 & E_n \otimes g(y) \\ -E_n \otimes \overline{g(y)}^T & 0 \end{pmatrix} & \quad \text{on} \quad (0) \times S^t, \text{ i.e. } x = 0, |y| = 1. \end{aligned}$$

Under $K_{\mathbf{C}}(B^{s+1}, S^s) \cong \tilde{K}_{\mathbf{C}}(S^{s+1})$ one then has a graded ring structure in $\bigoplus_{-1}^{\infty} \tilde{K}_{\mathbf{C}}(S^{s+1})$ isomorphic to $\pi_*(U)$. According to the Bott periodicity theorem (see [K], p. 123) this ring is the polynomial ring $\mathbf{Z}[a]$ generated by the generator of $\tilde{K}_{\mathbf{C}}(S^2)$; i.e., $\pi_*(U)$ is the polynomial ring generated by the generator a of $\pi_1(U)$.

Similarly, $\pi_*(O)$ is the commutative ring with generators $b_0 \in \pi_0(O)$, $b_3 \in \pi_3(O)$, $b_7 \in \pi_7(O)$ with relations $2b_0 = 0$, $b_0^3 = 0$, $b_3^2 = 4b_7$ ([K], p. 156-157).

To prove Theorem B we therefore only have to show:

Case U . $\rho_1 \in E_1^U$ is mapped by ϕ to $a \in \pi_1(U)$.

Case O . $\sigma_0 \in E_0^O$ is mapped by ψ to $b_0 \in \pi_0(O)$ and $\sigma_3 \in E_3^O$ to $b_3 \in \pi_3(O)$

This has already been done in 3.2.

4. SYMPLECTIC HR-MATRICES

4.1. Symplectic matrices A leave invariant the bilinear form with coefficient matrix $J = \begin{pmatrix} E_n \\ -E_n \end{pmatrix}$; i.e., $A^TJA = J$. With respect to the HR-matrix relations (1) they behave exactly like orthogonal or unitary matrices:

PROPOSITION 4.1. *Let A_1, A_2, \dots, A_s be $2n \times 2n$ -matrices, and $A_0 = E_{2n}$. Then $\sum_0^s x_j A_j$ is symplectic up to the factor $\sum_0^s x_j^2$ for all x_0, x_1, \dots, x_s if and only if A_1, A_2, \dots, A_s is a set of symplectic HR-matrices.*

Proof.
$$\begin{aligned} \left(\sum_0^s x_j A_j^T \right) J \left(\sum_0^s x_j A_j \right) &= \sum_0^s x_j^2 A_j^T J A_j \\ &+ \sum_1^s x_0 x_j (A_j^T J + J A_j) + \sum_{j, k=1}^s x_j x_k (A_j^T J A_k + A_k^T J A_j), \quad j \neq k. \end{aligned}$$

Assume $A_j^T J A_j = J, j = 0, \dots, s$; and

$$A_j^2 = -E, A_j A_k + A_k A_j = 0, \quad j, k = 1, \dots, s, j \neq k.$$

Then $-A_j^T J = J A_j$, and $A_j^T J A_k + A_k^T J A_j = -J(A_j A_k + A_k A_j) = 0$. Thus the whole expression reduces to $\left(\sum_0^s x_j^2 \right) J$. The argument is plainly reversible.

4.2. In the following, “symplectic” will mean unitary symplectic; i.e., we consider matrices from the compact group $Sp(n) \subset U(2n)$. A set of symplectic HR-matrices A_1, A_2, \dots, A_s is thus an ε -representation of G_s in $Sp(n)$; we continue to call its degree $2n$. The notations $v_s^{Sp}, d_s^{Sp}, D_s^{Sp}, E_s^{Sp}$ have the same meaning as before for U and for O .

All elements of G_s have square 1 or ε ; a matrix $\in U(2n)$ of square $\pm E$ is symplectic if and only if it is of the form $\begin{pmatrix} A & B \\ -\bar{B} & \bar{A} \end{pmatrix}$ with $B^t = -B$, $\bar{A}^T = A$ in the case of square E , and $B^t = B$, $\bar{A}^t = -A$ in the case of square $-E$. Symplectic representations of G_s are sums of irreducible unitary representations; if an irreducible unitary ε -representation is not (equivalent to a) symplectic, we have to add its conjugate-complex in order to obtain an irreducible symplectic ε -representation. Due to the description (2) of the G_s the following observations yield the complete list of degrees etc.

4.3. (a) The tensor product of a unitary representation V of even degree and an orthogonal representation (of any degree) is symplectic if and only if V is.

(b) Since $Sp(1) = SU(2)$, the irreducible unitary ε -representations (of degree 2) of $G_2 = Q$ are symplectic.

(c) The irreducible ε -representations of D (= dihedral group of order 8) are not symplectic, but orthogonal; the same holds for D^j and $D^j K$, $K =$ Klein 4-group.

(d) The tensor product of any representation with the irreducible ε -representation (of degree 1) of $G_1 = C$ is not symplectic.

The periodicity modulo 8, $G_{s+8} = G_8 G_s = D^4 G_s$, with $d_8^O = d_8^U = 16$, yields $d_{s+8}^{Sp} = 16d_s^{Sp}$ and $v_{s+8}^{Sp} = v_s^{Sp}$. For $s \equiv 2, 3, 4$ modulo 8 the irreducible unitary ε -representations of G_s are symplectic, $d_s^{Sp} = d_s^U$ and $v_s^{Sp} = v_s^U$; for the other s they are not, thus $d_s^{Sp} = 2d_s^U$. For $s \equiv 1, 5$ modulo 8 the conjugate-complex representations are inequivalent, thus $v_s^{Sp} = 1$; for $s \equiv 0, 6, 7$ we combine two equivalent representations, thus $v_s^{Sp} = v_s^U$, i.e., $v_s^{Sp} = 1$ for $s \equiv 0, 6$ and $v_s^{Sp} = 2$ for $s \equiv 7$. The restriction arguments from G_{s+1} to G_s are as before and yield the E_s^{Sp} , which are periodic modulo 8.

We summarize the results in the following table

(6)	s	0	1	2	3	4	5	6	7	8	9
v_s^{Sp}		1	1	1	2	1	1	1	2	1	1
d_s^{Sp}		2	2	2	2	4	8	16	16	32	32
D_s^{Sp}		\mathbf{Z}	\mathbf{Z}	\mathbf{Z}	$\mathbf{Z} \oplus \mathbf{Z}$	\mathbf{Z}	\mathbf{Z}	\mathbf{Z}	$\mathbf{Z} \oplus \mathbf{Z}$	\mathbf{Z}	\mathbf{Z}
E_s^{Sp}		0	0	0	\mathbf{Z}	$\mathbf{Z}/2$	$\mathbf{Z}/2$	0	\mathbf{Z}	0	0

4.4. Comparing with (3) one notes that $D_s^O \cong D_{s+4}^{Sp}$ and $E_s^O \cong E_{s+4}^{Sp}$. The isomorphisms can be made explicit in terms of the \cup -product introduced in 2.2, as follows.

Let $\rho_3 \in D_3^U = D_3^{Sp}$ be one of the generators, $\rho_3 = \bar{\rho}_3$, and $\sigma_t \in D_t^O$ one of the generators. The product $\rho_3 \cup \sigma_t \in D_{t+4}^U$ has degree $2.2.d_t^O$; this is precisely the degree of a generator of D_{t+4}^{Sp} . We check that $\rho_3 \cup \sigma_t$ is indeed in D_{t+4}^{Sp} and thus a generator: this is clear for $t \equiv 0, 6, 7$, $t+4 \equiv 2, 3, 4$ modulo 8 where $D_{t+4}^{Sp} = D_{t+4}^U$; for $t \equiv 1, 2, 3, 4, 5$ we know that $\sigma_t = \rho_t + \bar{\rho}_t$, whence $\rho_3 \cup \sigma_t = \rho_3 \cup \rho_t + \bar{\rho}_3 \cup \bar{\rho}_t$, i.e., it is one of the generators of D_{t+4}^{Sp} .

THEOREM 4.1. *The product of the generator $\rho_3 \in E_3^U = E_3^{Sp}$ with E_s^O is an isomorphism $E_s^O \cong E_{s+4}^{Sp}$ for all $s \geq 0$.*

4.5. We now consider the homomorphism $\theta: E_s^{Sp} \rightarrow \pi_s(Sp)$, analogous to ϕ and ψ before.

Let A_1, A_2, \dots, A_s be a set of s symplectic $2n \times 2n$ HR-matrices, and $A_0 = E$. Then

$$f_s(x_0, x_1, \dots, x_s) = \sum_0^s x_j A_j$$

$x = (x_0, x_1, \dots, x_s) \in \mathbf{R}^{s+1}$, $\sum_0^s x_j^2 = 1$, is symplectic. We consider f_s as a map $S^s \rightarrow Sp$ via $Sp(n)$; as in the cases U and O this yields a homomorphism $\theta: E_s^{Sp} \rightarrow \pi_s(Sp)$, $s \geq 0$. The $\pi_s(Sp)$ are known to be 0 or cyclic. Theorem A' can now be reformulated as follows.

THEOREM B'. θ is an isomorphism $E_s^{Sp} \rightarrow \pi_s(Sp)$, $s \geq 0$.

For $s = 3$ this is clear: since $E_3^{Sp} = E_3^U$ and $\pi_3(Sp) \cong \pi_3(Sp(1)) = \pi_3(SU(2)) \cong \pi_3(U)$, $c = \theta(\rho_3)$ is a generator of $\pi_3(Sp) = \mathbf{Z}$.

To complete the proof of Theorem B' we use, as for Theorem B, the \cup -product and results of K -theory relating $K_{\mathbf{R}}$ with $K_{\mathbf{H}}$, the quaternionic or symplectic K -theory. The product $c \cup b$, $b \in \pi_s(O)$, can be expressed in terms of linear maps $S^3 \rightarrow Sp(1) = SU(2)$, $S^s \rightarrow O(m)$, $S^{s+4} \rightarrow U(4m)$. As seen in 4.3, it lies in fact in $Sp(2m) \subset U(4m)$ and can thus be regarded as an element of $\pi_{s+4}(Sp)$. The map $c \cup -: \pi_s(O) \rightarrow \pi_{s+4}(Sp)$ corresponds, under $\pi_s(O) \cong \tilde{K}_{\mathbf{R}}(S^{s+1})$ and $\pi_t(Sp) \cong \tilde{K}_{\mathbf{H}}(S^{t+1})$, to the isomorphism $\tilde{K}_{\mathbf{R}}(S^{s+1}) \rightarrow \tilde{K}_{\mathbf{H}}(S^{s+5})$ given by the external tensor product of bundles with the generating bundles of $\tilde{K}_{\mathbf{H}}(S^4) = \mathbf{Z}$ (see [K], p. 154). Hence $c \cup -$ is an isomorphism $\pi_s(O) \cong \pi_{s+4}(Sp)$.

Moreover, since everything is described by linear maps the diagram

$$\begin{array}{ccc} E_s^O & \xrightarrow{\psi} & \pi_s(O) \\ \rho_3 \cup - \downarrow & & \downarrow c \cup - \\ E_{s+4}^{Sp} & \xrightarrow{\theta} & \pi_{s+4}(Sp) \end{array}$$

is commutative. The upper and the two vertical maps being isomorphisms, so is θ .

5. LINEARIZATION

5.1. The groups E_s^U can be viewed, through the homomorphism $\phi: E_s^U \rightarrow \pi_s(U)$ in 3.1, as “linear homotopy groups” of U . This means that we consider maps of S^s into U via some $U(n)$ which are linear in the coordinates x_0, x_1, \dots, x_s of $\mathbf{R}^{s+1} \supset S^s$; and linear nullhomotopies, i.e., extensions to $S^{s+1} \rightarrow U(n)$ linear in x_0, x_1, \dots, x_{s+1} . It is an immediate corollary of Theorem B that these linear homotopy groups $\pi_s^{\text{lin}}(U)$ are isomorphic to the $\pi_s(U)$ by the obvious imbedding $\pi_s^{\text{lin}}(U) \rightarrow \pi_s(U)$. In other words:

Any map $S^s \rightarrow U$ is homotopic to a linear map, and if a linear map $S^s \rightarrow U$ is nullhomotopic then it admits a linear nullhomotopy.

Similar statements hold, of course, for $\pi_s(O)$ and $\pi_s(Sp)$.

5.2. If these linearization phenomena could be established directly (by some approximation procedure) one would obtain a very transparent proof of the Bott periodicity theorems for $\pi_s(U)$, $\pi_s(O)$, and $\pi_s(Sp)$, in the sense that they would be reduced to the algebraic computation of E_s^U , E_s^O , and E_s^{Sp} as carried out here.

5.3. Linear maps $S^s \rightarrow U$ via $U(n)$, etc., are given explicitly in terms of HR-matrices; thus the coefficients involve 0, ± 1 , $\pm i$ only. Such maps have a meaning over very general fields instead of \mathbf{R} and \mathbf{C} , and one should compare the corresponding linear homotopy groups with homotopy groups defined by means of algebraic maps.

REFERENCES

- [E] ECKMANN, B. Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratischer Formen. *Comment. Math. Helv.* 15 (1942/43), 358-366.
- [H] HURWITZ, A. Über die Komposition der quadratischen Formen. *Math. Ann.* 88 (1923), 1-25.
- [K] KAROUBI, M. *K-Theory*. Springer-Verlag, Berlin-Heidelberg-New York 1978.
- [LS] LAM, T. Y. and Tara SMITH. On the Clifford-Littlewood-Eckmann groups: A new look at periodicity mod 8. Preprint Berkeley 1988.
- [R] RADON, J. Lineare Scharen orthogonaler Matrizen. *Abh. Math. Sem. Hamburg* (1922), 1-14.

(Reçu le 15 décembre 1988)

Beno Eckmann

Mathematik
ETH-Zentrum
CH-8092 Zürich

vide-leer-empty