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HURWITZ-RADON MATRICES AND PERIODICITY MODULO 38

by Beno ECKMANN

0. INTRODUCTION

0.1. We consider complex n x n — matrices 4, 4,, ..., 4, either all unitary
(case U) or all orthogonal (case 0); they are called Hurwitz-Radon matrices,
in short HR-matrices, if

(1) A2 = —E, AA, + 4,A, =0, j, k=12 .,s,j#k;
Jj J J

E or E, denotes the unit matrix. Such matrices are well-known to exist,
even with entries 0, + 1, + i (case U) or 0, + 1 (case O). The possible
values of n are multiples mn,, m = 1,2, 3,.. where in case U, n, = 252
if s is even, n, = 267 Y2 if s is odd. In case O,n, = 2" V2if s = 7 mod §;
ne = 2% if s=0,6; ny =2"V2 if s=1,3,5; and n, = 2572/ ff
s = 2,4 mod 8.

If we put A, = E the relations (1) are equivalent to

N

fi(Xo, Xq,5 e Xg) = D XA;

0

being a unitary, or orthogonal respectively, matrix for all real x; with
Y. x? = 1. Thus f; can be considered as a map $*— U via U(n), or
0

S§¥ - 0 via O(n) where U = lim U(k) and O = lim O(k) are the infinite

unitary and orthogonal groups. We also write f, for the homotopy class

of that map, f,em,(U) or m,(0). We recall that by the Bott periodicity
theorems these groups are cyclic or 0.

THEOREM A. If A;, A,, .., A; are HR-matrices of minimal size n = ny(s)
then f. is a generator of m (U), or m,(0) respectively, s = 0,1,2, .. .

Remark 1. Fors = 0 (empty set of HR-matrices) we have fy(x,) = x,(1),
xg = 1; ie, fol) = (1), fo(—=1) = (=1), f5:58° > O(1) > 0. For s> 0,
fo: 8% — O clearly factors through SO(n) - SO (U being connected, the
analogue is irrelevant in the unitary case).
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Remark 2. The problem originally solved by Hurwitz [H] and Radon [R]
refers to the case O: One asks for complex bilinear forms z = f(x,y)

= (O, x;4;)y, where z = (21, ., Z,), ¥ = (V1 eor Yu)» X = (Xg, -y X;), Such that
0

23+ otz = X5+ A xD i+ YD),
This means that ) x;A4; is orthogonal, i.e. leaves invariant > y? except for
0 0

the factor ij‘; and thus, since we may assume A, = E, that A,, ..., 4;
0

1s a set of orthogonal HR-matrices in the sense of (1).
The case U refers to the analogous problem for the identity

[z |2 + o+ 2,17 = (eG4t x3) (1a* + 4 10l
where y and z are complex, and x real.
0.2. The symplectic case: It is also of interest to consider HR-matrices,
' i.e. matrices fulfilling (1), which are symplectic. A linear combination

Y. x;A; of 2n x 2n-matrices with 4, = E is symplectic up to the factor
0

Y. x? if and only if A,,.., A, is a set of symplectic HR-matrices (Pro-
0

position 4.1).
We restrict attention to unitary symplectic matrices, i.e., to the group
Sp(n) = U(2n), and write Sp for the infinite symplectic group lim Sp(k).

With a set A, .., A, of unitary symplectic HR-matrices, and A, = E, we
S S

associate the map fi(xg, X1, . X;) = 2, X;A;, Y. x7 = 1, of $* into Sp via
4] 0

Sp(n); we also write f, for the corresponding element of m (Sp), known to
be 0 or cyclic.

THEOREM A'. If A,, .., A, are unitary symplectic HR-matrices of minimal
size 2n, then f, is a generator of my(Sp).

0.3. The paper is organized as follows. We first recall (Section 1) that the
'HR-matrix problem can be formulated in terms of representations of certain
finite group G,,s = 0, 1,2, ... introduced by the author [E], and discuss
these representations using the elegant description of [LS]. In Section 2
the “reduced” Grothendieck groups of representations EU and E? are
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computed; they turn out to be isomorphic to m,(U) and 7, (0) respectively.
Moreover a product is defined in the direct sum of the EJ(EY) turning
it into a graded ring EY(E9). The claim of Theorem A is proved in
Section 3; we show that the maps ¢: EY — m,(U), V: E9 — 1, (0) given
by the f, of 0.1 are isomorphisms. Using the product structure in m(U)
and m,(0) known from K-theory the proof reduces to simple verifications
in low dimensions. The symplectic case is dealt with in Section 4. In
Section 5 we make a remark concerning the “linearization phenomenon”
for the homotopy groups of U, O and Sp.

1. THE GROUPS Gy AND THEIR REPRESENTATIONS

1.1. We will denote throughout by G, the group given by the presentation

2 2 . _ .
Gs = <& dy1; Clslﬁ = 1> aj = & ajak = Sakaja J:k - 1: 27 ey 85 ] # k> .

Clearly any set A4, .., A, of HR-matrices yields a (unitary or orthogonal)
representation of G, of degree n by e— —E, aj—>A4;, j=1,2,..,s.
Conversely a representation of G, with ¢ — — E, in short an e-representation,
yields a set of s HR-matrices. For the elementary properties of G, and
its representations we refer to [E]. We just recall that the order of G;
is 2571 that ¢ is central, and that the irreducible unitary e-representations
of G, are of degree 2% if s is even (one equivalence class), of degree
267172 4f 5 is odd (two equivalence classes). These degrees are the minimal
values n, in case U. As for the case O, one has to recall that a repre-
sentation is equivalent to an orthogonal one if and only if it is equivalent
to a real (and orthogonal) one. Thus, unless an irreducible unitary e-repre-
sentation is already real, one has to add its conjugate-complex representation,
and the discussion of the various cases depending on s yields the minimal
values n, (case O) mentioned in the introduction; in other words, the degrees
of the irreducible orthogonal e-representations of G,.

1.2. A very simple and useful scheme for studying the groups G, and their
e-representations (and many other things) has been deviced by T.Y. Lam
and T. Smith [LS]. They have expressed the G, as products of very small
and well-known groups. Namely C = G, the cyclic group of order 4;
Q = G,, the quaternionic group of order 8; K, the Klein 4-group; and
D, the dihedral group of order 8. Although K and D do not belong to the
family G, they are of a similar nature and contain a distinguished central
element ¢ of order 2 (distinguished arbitrarily in K). “Product” here means
the central product obtained from the direct product by identifying the
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two ¢’s. The expression for the G, then is as follows, displaying a funda-
mental periodicity modulo 8:

@ s | o0 1 2 3 4 s 6 7 8 9

G, Z/2 C O QK QD D:C D’ DK D* D*C
and G,,3 = D*G

The tensor product of e-representations of two of the groups G,, K, D
is an e-representation of their product above, and all e-representations of
the G, can be obtained in that explicit way from those of C, Q, K, D,
which are well-known. This yields, in particular, the characters y and the
Schur indices I of the irreducible unitary e-representation (the Schur index
I = 1 if the representation is equivalent to a real one; if it is not,
I = — 1 if it is equivalent to the conjugate-complex one, I = 0 otherwise).
Both ¥ and I behave multiplicatively with respect to the central product.

s*

1.3. The Schur indices of the irreducible e-representations are: O for
C=G,,—1for Q =G,, and 1 for K and D (two equivalence classes
for K, one for D). This yields the Schur indices I, of the irreducible
g-representations of the G,, as listed in (2) below; we further list the
numbers vV of inequivalent unitary, and v? of inequivalent orthogonal
irreducible e-representations, and the respective degrees dY, d?. Note that I,
is periodic with period 8, and d? is periodic with period 8 in the sense
that d% ¢ = 16d9. Finally we include in the same table the Grothendieck
groups DY and D? of (equivalence classes of) irreducible e-representations
of G,, with respect to the direct sum of representations.

(3) s 0 1 2 3 4 5 6 7 8 9

DY 7 1072 7 1071 7 1072 717 1071 71 1DZL

D¢ Z Z Z 1012 Z Z Z 10712 7 Z
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The values of d? follow immediately from the I, and the d U. The values
n, for the case 0, as given in the Introduction, are the d g

2. THE REDUCED &-REPRESENTATION RING

2.1. For all s> 0 the group G, is the subgroup of G,,, obtained by
omitting the generator a,,;; let h;: G, —> Gy, be the embedding homo-
morphism. Via h, we can restrict an g-representation of Gy, ; to G, which
in terms of HR matrices means omitting A ;.

Let h*:DY. , - DY be the corresponding homomorphism of Gro-
thendieck groups, and EY = DY/h*DY,, the “reduced” groups; similarly
E® = D9h* DY, . They can easily be computed by means of the characters
of e-representations, as follows.

For Q and D the character of an irreducible unitary e-representation
is 0 except on 1 and & For C and K it is # 0 on all 4 elements; on the
essential generator (#¢) of C it is + i or — i for the two inequivalent
representations, and + 1 or — 1 in the case of K. For Gy, s even, we
infer from the table (2) that the character is 0 except on 1,& For G,
s odd, the character is O except on 1,& and two further elements z, ez;
on these the two inequivalent e-representations differ just by the sign of the
character.

If sis even, dY,, = dY = 29%; thus the restriction of an irreducible
e-representation must be irreducible, whence h*DY,, = DY, EV = 0. If 5 is
odd, d?,; = 2dY = 26*V/2; thus the restriction is the sum of two irreducible
e-representations, and since the character is 0 (except on 1, ¢) these two
must be inequivalent. Therefore h¥ DY, , is the “diagonal” of DY = Z @ Z,
and E/ = Z; its generator p, is represented by either of the two inequivalent
irreducible e-representations of G;, — p, by the other one.

In the orthogonal case the E? are computed similarly from (3). Since
d{ =2 and df = 1, the restriction from D¢ to D¢ yields twice the
generator, and E§ = Z/2; the same argument holds for s = 0 mod 8,
dJy, =2d2. Since df =4 and d? =2, we get E? = Z/2. From
d§ = df = 4 we get E§ = 0. As for s = 3, the character argument shows
that h¥ DY = diagonal of DS (=Z@Z), and E = Z. For s = 4,5, 6 the
dimensions d¢,; = d? show that E¢ = E¢ = E2 = 0. For s = 7, the
character argument yields h¥ D§ = diagonal of DY (=Z@Z), and E9 = Z.
Finally one has, for all s, E?, ¢ = E9.
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These results are summarized in the table
4 s 0 1 2 3 4 5 6 7 8 9

EY 0 Z 0 Z 0 Z 0 Z 0 Z

E° 1Z/2 Z/2 0 Z 0 0 0 Z 7/2 71/2

According to the Bott periodicity theorems the above table is just that
of the n, (U) and n,(0),s = 0, 1, 2, .... Before studying the relation as stated
in Theorem A we establish product structures in the reduced Grothendieck
groups of e-representations, i.e., of HR-matrices.

2.2.  We consider HR-matrices A, 4,, .., A, € U(n) and put, for
X = (Xg, Xq, .., X;) € RSH1

and 4, = E, (n X n unit matrix)

F) = Y x4,

0

For all x with | x| = 1, f(x) is a unitary matrix: this is, as mentioned
in the Introduction, precisely the meaning of the HR-matrix relations (1).
Let further B,, B,, ..., B, € U(m) be HR-matrices, and for

y = (y07y17"'9yt)ERt+1> BO = Ema

g(y) = %kak;
g(y) € U(m) for all y with | y| = 1. We define F by
fX)®E, E,® g ) |
—E,®9»" fx)"®E,

One immediately checks that F(x, y)FT(x, y) = (|x|*>+[y|*)E,,,,. Thus F(x, y)
e U(2nm) for all (x, y) e R°"**2 with | x|? + | y|?* = 1. Since the coefficient
matrix of x4 is E,,, the coefficient matrices of xi, ..., X5, Vo, .., ¥, constitute
a set of s + t + 1 HR-matrices € U(2nm). They are, explicitly,

9 A, ® E, 0 0 E,, 0 E Q®B,
( 0 _AJ®Em ’ —Enm 0 ’ En®Bk 0

with j = 1,..,s and k = 1,..,¢. In other words, we have a product of
g-representations of G, and G,

F(x, y) = <

U U~ pu
Dy X Dy > Dgyryy.
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Since addition in DV is by the direct sum of e-representations this product
is clearly distributive. Associativity (up to equivalence) is easily checked. We

[e 0]
thus get a ring structure in DY = @ DY; we have added the term DY = Z
1

generated by the ring unit. The ring DY is graded if the grading is by
s + 1 for D;.

From the HR-matrices (5) of the product one notes that if one of the two
factors is restricted from DY so is the product; ie, h*DY is a (graded)
ideal in DY, and we get a (graded) ring structure in DY/hxDJ = EY.

The same procedure yields, of course, a (graded) ring structure in

with grading s + 1 for E?. In 2.3 and 2.4 below these

S 9
s=—1

E9= @ E?

rings are described explicitly.

Remark 2.1. An easy computation shows that the rings EJ and EY
are anticommutative with respect to the grading, i.e., commutative except for
the factor (—1)*"V¢*D  This will not really be used since the EV and
E? are all 0, Z or Z/2. We just note that in the case Z, with generator
Ps, — Ps 18 given by the other equivalence class of irreducible e-represen-
tations, see 2.1.

2.3. Thering EY.

The generator p of E7, given by an irreducible unitary g-representation
of G,, has degree 2% if s is even, 2712 if 5 is odd. The product
PP € EJyr 41 has degree

26F1% 22 if s and t are even

+ . . .
20TV if s is even, t odd, or vice-versa ,

s +i2 if sandtare odd.

Thus, unless both s and t are even, the product is irreducible, i.e.,
PsPe = £ Pyiiv1- After choice of p; e E{ we can choose p; = p2,

Ps = P1P3 = P3P = P3,..,and for all odd s = 2r — 1, p, = p%; for even
s, EV = 0.

PROPOSITION 2.2. The product with p,eE 1 is an isomorphism EY
=E/., forall s. Forodd s =2 —1 we choose

Pa—y = pi,l=1,2,3, ...
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THEOREM 2.3. EUY is the polynomial ring Z[p,].

24. THERING E?.

We denote by o, the generator of EC (= 0 if s = 2,4, 5,6 modulo 8;
determined up to sign if s = 3, 7 modulo 8 where E¢ = Z).

The generator p, (= p}) e EY can be given by a real s-representation
of degree 8 which we can use as generator o,e E9. The ring homo-
morphism @: E¢ - EY induced by the embedding O — U, ®(c,) = p, is
thus an isomorphism E9 = EY. In E¢ the degree of c,0,€e E, 5 is
16d? = d?, . Hence o0, is irreducible, i.e, = + o,, for all 5. In parti-
cular we can choose 6,5 = 6%, 6,3 = 63,..,0g,_; = G&.

PROPOSITION 2.4. The isomorphism E?2 = E% ¢ can be given by the
product with o, e E9.

PROPOSITION 2.5. o,€ EY generates a subring of ES which is the
polynomial ring Z[c-].

We further note that c;e E$ is mapped by ® to 2p;e EY. From
O(c3) = 4p% = 4p, = ®(4o,) we infer that 6% = 45,. As for o, e EY,
it is of degree 1 and order 2, and c}eE{ is of degree 2 and order 2,
ie,o0d = o,. Of course 3 = 0.

In summary:

THEOREM 2.6. E$ is the commutative ring, graded by s +
E9, generated by o©,,G3,0, with the only relations 26, = 0, G

1 for
0 =0,
c3 = 40,.

3. THE HOMOTOPY GROUPS OF U AND O

3.1. We will deal explicitly with the unitary case. The orthogonal case
can be treated in almost exactly the same way; any additional arguments
will be mentioned wherever necessary.

In the Introduction 0.1 we associated with a set of s unitary n x n
-HR-matrices, i.e., with an e-representation of G,, a map f:S° — U of the
s-sphere S* < R**! into the infinite unitary group U via U(n). Since con-
jugation is homotopic to the identity, equivalent representations yield homo-
topic maps f (in the orthogonal case, we have to observe that conjugation
can be made with a matrix from the identity component). The map
¢: DY — r (U) thus obtained is a homomorphism; indeed, homotopy group
addition of f and f’ in m,(U(n)) can be replaced by multiplication in
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0
U(n); this is homotopic in U(2n) to the map <g f')’ and on the other

hand addition in DV is defined through the direct sum of representations.

If the e-representation is restricted from DY, , , i.e., if the set of HR-matrices
belongs to a set of s + 1 HR-matrices, f extends to a map S**! — U and
is thus nullhomotopic. The homomorphism ¢ therefore induces a homo-
morphism EY — n (U), again written ¢. The analogue E¢ — n (0) will be
denoted by V. The groups EY and E? are 0 or cyclic generated by
irreducible e-representations, i.e., by HR-matrices of minimal size. Our claim,
Theorem A, can therefore be reformulated as follows.

THEOREM B. The homomorphisms ¢:EY — n,(U) and {:E9 - n (0)
are isomorphisms, s = 0,1,2, ... .
3.2.  For small values of s the claim is easily checked.

Case U
s = 1: EY can be generated by one HR-matrix 4, = (i). Thus

f(xo,x1) = (xo+ix;) e U(1)

if x§ + x7 = 1. This is a generator of n,(U(1)) = n,(U) = Z.
s = 3: EYis generated by 3 HR-matrices

()

Xotix;  X,+ix;

Thus

f(x07x19x2>x3)=< >ESU(2)

—X,+tixX; Xo—ix,

3

if Y} x? = 1. This is a generator of‘n3(SU(2)) [=m5(S%)] = n,y(U) = Z.

0

Case O

s = 0: Empty set of HR-matrices, f(x) = (xo) € O(1)if x2 = 1, x, = =+ 1.
This is a generator of 1o(O(1)) = ny(0) = Z/2.

s = 1: E9is generated by one HR-matrix A = < 1 1>. Thus

S0, x;) = ( Yoo

*Xl xO

) e SO(2)
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if x§ + x{ = 1. This is a generator of ©,(SO(2)) = Z; as a map S! — SO(3)
it is a generator of m,(SO(3)) = =,(0) = Z/2.
's = 3: EYis generated by three 4 x 4 HR-matrices which yield

f(xo,X1,%,,%x3) = — X1 Xog X3 —Xx, \€S04)

3
if > x? = 1. This is a map S* — SO(4) which is well-known to become,
0

under SO(4) — SO(5), a generator of n5(SO(5)) = n4(0) = Z.

3.3. The proof of Theorem B becomes very simple if ¢ and  are turned
into ring homomorphisms EY — n,(U) = @ ny(U) (n_, = Z generated by
-1

the ring unit) and EJ — n,(0). For this purpose we have to define a
product in n (U) and =, (0), graded by s + 1 for m,. This is done by
extending the product introduced in 2.2 from linear maps f:S°* —- U or O
to arbitrary continuous maps.

Given a continuous map f:S° — U via U(n),

S* = {x = (Xg, X1, X;) ERTL  with [x]| = 1},

we extend it to fo:R*"! = M (C) by fox) = | x| f(—x—>, fo(0) = 0.

| x |
Similarly for g: S* — U via U(m), S' = {ye R*""! with | y| = 1}. Then

folx) ® E, E, ® go(y) )
—E,® 9,007 fo®»' ® E,
is a unitary 2nm x 2nm matrix for all (x, y) e R¥**"2 with [x |2 + | y]2 = 1

%and thus defines a map F:S*"'*! — U via U(2nm). Homotopic maps f,
or g respectively, yield homotopic F and we obtain a product F = fug

F(x, y) =(

Tcs(U) X nt(U) _\f) Tcs+t+1(U) .

%From the description of homotopy group addition in w,(U) as given above
lin 3.1 one easily checks that f U g is distributive. Thus m,(U) is a ring,
and so is m,(0), graded by s + 1 for x,(U) or 7,(0).

434 Bott periodicity is usually expressed in terms of complex and real
K-theory. We thus use the isomorphisms
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n(U) = K571 and  7,(0) = Kg(S™H7).

We recall that m,(U) = K(S**1) is obtained through i, (U) = KB, §°
where B*! is the unit ball {x e R°"%,| x| < 1}; the element corresponding
to f e m,(U) is given by two (trivial) C-vector bundles over Bs*1 identifiec
on S° by means of f. It will not come as a surprise that f ug above
corresponds to the u-product

KC(BS+1, SS) X KC(B1+1,St) N KC(BS+t+2, Ss+t+1)

given by the external tensor product of bundles. Indeed the map f U ¢
— F:S$s*'*1 5 U via U(2mnm) can be interpreted as follows: One decom
poses SFITL < RSTIT2 (coordinates Xg, Xy, . Xgs Vo, V1o Ve With [ X7

1 :
+ |y|?=1) into {] x|? <%,|y|2 25} homeomorphic to B*™! x S anc

{Ix]? > %, |y|? < 5} homeomorphic to §* x B'*!; the map F is

I

(f(X)®Em __0 ) on Ssx(O),i.e.y- O,'Xl—-—l,
0 fx)" ® E,

( 0__ En®g(y)> on (0) x Shiex=0,|y]=1.

Under K(BS*Y, §5) = K(S°*!) one then has a graded ring structure i1
@D Izc(SS“) isomorphic to m(U). According to the Bott periodicity theoren
-1

(see [K], p. 123) this ring is the polynomial ring Z[a] generated By the
generator of K(S?); ie, m(U) is the polynomial ring generated by th
generator a of m,(U).

Similarly, n,(O) 1s the commutative ring with generators b, e my(O
by € n4(0), b,emn,(0) with relations 2b, = 0, b3 = 0, b3 = 4b, ([K
p. 156-157).

To prove Theorem B we therefore only have to show:

Case U. p,; € EY is mapped by ¢ to a € n,(U).
Case 0. o©,€ EJ is mapped by \ to by € 15(0) and o3 € E§ to by € 1140
This has already been done in 3.2.
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4. SyMPLECTIC HR-MATRICES

4.1. Symplectic matrices 4 leave invariant the bilinear form with coefficient
. E.)\ . . :
matrix J = < E >; ie, ATJA = J. With respect to the HR-matrix

relations (1) they behave exactly like orthogonal or unitary matrices:

ProrosiTiON 4.1. Let A,, A,, .., A, be 2n x 2n-matrices, and Ay=E,,.
s 1

Then ) x;A; is symplectic up to the factor Y x?% for all xq, Xy, ., X
0 0

if and only if A,, A,, .., A, is a set of symplectic HR-matrices.
Proof. (Z xjAjT> J <Z xjAj> =Y x;A]JA;
0 0 0

+ Zxoxj(AfJ+JAj) + Z xjxk(AjTJAk—l—AkTJAj), j#k.
1 k=

j’ 1

Assume AJJA; = J,j =0, .. s; and
A2 = — E AA + AA; =0, ik =1,.,8]#k,
Then — ATJ = JA;, and ATJA, + ATJA, = — J(A;4,+ A,A;) = 0. Thus

N

the whole expression reduces to <Z X Jz> J. The argument is plainly reversible.
0

4.2. In the following, “symplectic” will mean unitary symplectic; i.e., we
consider matrices from the compact group Sp(n) = U(2n). A set of symplectic
HR-matrices A4,, 4,, .., A, 1s thus an e-representation of G, in Sp(n); we
continue to call its degree 2n. The notations v3? 457, D57 ESP have the
same meaning as before for U and for O.

All elements of G, have square 1 or ¢; a matrix € U(2n) of square + E

A B
is symplectic if and only if it is of the form ( B E) with B* = — B,

AT = A in the case of square E, and B' = B, A' = — A in the case of
square — E. Symplectic representations of G, are sums of irreducible unitary
representations; if an irreducible unitary e-representation is not (equivalent
to a) symplectic, we have to add its conjugate-complex in order to obtain
an irreducible symplectic e-representation. Due to the description (2) of the
G, the following observations yield the complete list of degrees etc.
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43. (a) The tensor product of a unitary representation V' of even degree
and an orthogonal representation (of any degree) is symplectic if and only
if V 1s.

(b) Since Sp(1) = SU(2), the irreducible unitary e-representations (of degree 2)
of G, = Q are symplectic.

(c) The irreducible e-representations of D (= dihedral group of order 8)
are not symplectic, but orthogonal; the same holds for D’ and DK,
K = Klein 4-group.

(d) The tensor product of any representation with the irreducible e-repre-
sentation (of degree 1) of G, = C is not symplectic.

The periodicity modulo 8, G,,s = GgG, = D*G,, with dJ = d§ = 16,
yields d3%s = 16457 and v524 = v37. For s = 2, 3,4 modulo 8 the irre-
ducible unitary e-representations of G, are symplectic, d5? = dY and
vs? = v7; for the other s they are not, thus d5? = 2dV. Fors = 1, 5 modulo 8
the conjugate-complex representations are inequivalent, thus v3? = 1; for
s = 0,6,7 we combine two equivalent representations, thus v3? = vV, ie,
vi? = 1 for s = 0,6 and v5? = 2 for s = 7. The restriction arguments from
G,+1 to G are as before and yield the ES?, which are periodic modulo 8.

We summarize the results in the following table

6) s 0 1 2 3 4 5 6 7 8 9

v L1 12 1 1 12 11
s |2 2 2 2 4 8 16 16 32 32

D% | Z V4 72 1707 Z Z 7 107 Z Z

ESP 0 0 0 Z 7Z/2 7/2 0 Z 0 0

4.4. Comparing with (3) one notes that D¢ = D52, and E? = E52,. The
isomorphisms can be made explicit in terms of the w-product introduced
in 2.2, as follows.

Let p;eDi = D% be one of the generators, Ps = p3, and c,eD?
one of the generators. The product p, U o, e D/ ., has degree 2.2.4°:
this is precisely the degree of a generator of D;?,. We check that py U c,
is indeed in DJ?, and thus a generator: this is clear for t=0,6,7,
t +4=23,4modulo 8 where D7, = DU, ,; for t = 1,2,3, 4, 5 we know
that o, = p, + p,, whence p; U 6, = p; U p, + P3 U p,, i€, it is one of the
generators of D57, .
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THEOREM 4.1. The product of the generator p;e EY = E3 with E?
is an isomorphism E? = ES?, for all s > 0.

4.5. We now consider the homomorphism 0: E5? — n (Sp), analogous to ¢
and s before.

Let 4,,A4,,.., 4, be a set of s symplectic 2n x 2n HR-matrices, and
Ao = E. Then

FslXgs X1, om X5} = Z xjAj

N
X = (Xg, X1, X)) ERETL Y x2 = 1, is symplectic. We consider f; as a map
0

S* — Sp via Sp(n); as in the cases U and O this yields a homomorphism
0: ES? - nt(Sp), s = 0. The = (Sp) are known to be 0 or cyclic. Theorem A’
can now be reformulated as follows.

THEOREM B'. 0 is an isomorphism E3? — w (Sp), s = 0.

For s =3 this is clear: since E5? = EY and m5(Sp) = n5(Sp(1))
= 75(SU(2)) = n5(U), ¢ = 0(ps) is a generator of n5(Sp) = Z.

To complete the proof of Theorem B’ we use, as for Theorem B,
the u-product and results of K-theory relating Kg with Ky, the quaternionic
or symplectic K-theory. The product ¢ U b, b € t,(0), can be expressed in
terms of linear maps S° — Sp(1) = SU(2), $* — O(m), S°** — U(4m). As seen
in 4.3, it lies in fact in Sp(2m) < U(4m) and can thus be regarded as an
element of m . ,(Sp). The map ¢ u—: 7 (0) — T, ,(Sp) corresponds, under
m,(0) = Ke(S**Y) and m,(Sp) = Ku(S'*Y), to the isomorphism Kg(S°+")
— Ky(S°+%) given by the external tensor product of bundles with the
generating bundles of IEH(S“) = 7 (see [K], p. 154). Hence ¢ u— 1is an
isomorphism 7 (0) = T, 4(Sp).

Moreover, since everything is described by linear maps the diagram
E° % (0

N

pau — l l cu~—

0
E§£4 —¥ s+ 4(SP)

is commutative. The upper and the two vertical maps being isomorphisms,
so 1is 0.
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5. LINEARIZATION

51. The groups EY can be viewed, through the homomorphism ¢:EY
— n,(U) in 3.1, as “linear homotopy groups” of U. This means that we
consider maps of §° into U via some U(n) which are linear in the
coordinates X, Xy, .., X, of R**! > §%; and linear nullhomotopies, ie.,
extensions to S**! = U(n) linear in Xq, Xy, .., Xs1 1. It is an immediate
corollary of Theorem B that these linear homotopy groups nlin(U) are
isomorphic to the m,(U) by the obvious imbedding mi*(U) — m,(U). In
other words:

Any map S° — U is homotopic to a linear map, and if a linear map
S5 — U is nullhomotopic then it admits a linear nullhomotopy.

Similar statements hold, of course, for w,(0) and wy(Sp).

5.2.If these linearization phenomena could be established directly (by some
approximation procedure) one would obtain a very transparent proof of the
Bott periodicity theorems for n (U), n,(0), and w,(Sp), in the sense that they
would be reduced to the algebraic computation of EY, E?, and ES5? as
carried out here.

5.3. Linear maps S®* —» U via U(n), etc, are given explicitly in terms of
HR-matrices; thus the coefficients involve 0, + 1, + i only. Such maps have
a meaning over very general fields instead of R and C, and one should
compare the corresponding linear homotopy groups with homotopy groups
defined by means of algebraic maps.
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