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FONCTION D'EULER 63

Y 1 ax + 0 - - xk J pour tout k > 0
<pàkx \(log *) /

De façon précise, on conjecture que les mêmes principes appliqués à l'étude

des quantités

S{xk_n_ z 108-WK-))
e, ^t). z l0^

tp(n)^x CPW <p(n)<x

conduisent au résultat

L(x, fc) £ log*(p(/i) ax Y(-1)''77-^77 (log x)t_i +
(p(n) ^ x i 0 (kl).

Je remercie J.-L. Nicolas de m'avoir fourni le thème de l'étude, G. Robin
de m'avoir aidé et M. Balazard pour de multiples remarques, notamment la
forme améliorée du lemme F 1). J'exprime mes vifs remerciements au referee

pour ses nombreuses et intéressantes suggestions.

2. Lemmes préliminaires

On aura besoin des lemmes suivants, obtenus par voie élémentaire.

Lemme A ([8], [11]). On a

v 1
1

p2(n) log n /logxX —t a log x + ay - £ + 0 —
n^xCpW n=l rccp(n) \ X

Lemme B. On a

^ 1 (p—l)2
Z "TA a~< T\ + 0(1).

n^xty(lî) p(p—l) + 1

pjfn

Démonstration. Il est prouvé dans [5] (Lemme 3.2 page 110) le résultat
plus général

Z El f1 + ^ log X + 0,(1).
n^x cp(n) qJrl\ Q(ÇL~l)J l

(n, l)- 1

En posant / p dans la preuve de ce résultat, 0,(1) s'explicite alors de la
façon suivante
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0,(1). ^ + ^0(1) -0(1),
P V

où la constante impliquée par le symbole 0 est absolue. Le lemme B en
résulte alors en observant que

u(l 1 \ <P(P) (P-1)2
hp\ q{q-i)/ p i) + 1

Lemme C [2]. On a

0*(x) : Y log {p — 1) x + 0 -—77—), pour tout H > 0
p^x \logHx)

Remarque. Le lemme C est l'une des formes équivalentes du théorème
des nombres premiers avec reste. Notre résultat dépend directement des

estimations élémentaires d'un tel reste, dont la première fut obtenue par
E. Bombieri en 1962.

3. Démonstration de la proposition

lre étape.

Etude de la somme S(x) £
lo§ (*/?("))

n$x (p

Lemme 1.1. On a

» |i2(n) log n_y logp„b,imp(n)
ü

1) + 1'

Démonstration. Soit, pour >0, la série

BY t - V ^2(tl)
S „?i ns<p(n)

'

Le théorème du produit eulérien donne
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