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L'Enseignement Mathématique, t. 35 (1989), p. 61-76

RÉPARTITION DES VALEURS DE LA FONCTION D'EULER

On désigne par cp la fonction arithmétique d'Euler, par y la constante

d'Euler et par a la constante

Les symboles p et q dénotent toujours des nombres premiers distincts,
et Ç(s) la fonction zêta de Riemann. Considérons

Plusieurs auteurs ont étudié cette quantité en utilisant des méthodes élémentaires

ou des méthodes non élémentaires. Traditionnellement on appelle
méthodes non élémentaires celles dont les arguments utilisent l'analyse
complexe ou l'analyse de Fourier. Nous suivons ici cet usage.

P. Erdös et P. Turân [4] furent les premiers à montrer que

leur démonstration, non élémentaire, est basée sur l'existence d'une fonction
de distribution pour n/cp(n) prouvée par I. J. Schoenberg [10], mais ne donne

pas la valeur explicite de a. R. E. Dressler [3] a donné une démonstration,
élémentaire, en approchant cp(n) par les fonctions

où pk est le /cième nombre premier. P. T. Bateman [1], utilisant des méthodes
d'analyse complexe, a fourni diverses estimations de F{x), dont la plus
précise est

par A. Smati

1. Introduction et présentation des résultats

F{x) # {n\cp(n)<x} E 1
•

<p(n) ^ x

F(x) ax + o(x) (x-^ + oo);

(\ \ 1/2

F(x) ax +0(x exp {- (1 -s) - log x log log x j })
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pour tout s positif, fixé. Enfin J.-L. Nicolas [9] a démontré que

x
F(x) ax + 0

log x

La méthode utilisée est élémentaire et est due essentiellement à Tchebychef.
Elle consiste à étudier les sommes

£ log (p{ri)etX -TT
<p(n)4x (p(n)^x (P\M)

et à les comparer. Dans cet article, on généralise la méthode décrite par
J.-L. Nicolas et on démontre le résultat suivant :

Théorème. On a

F(x) Y * ax F 0
cp(w) 4 X log X

Notons

L(x) £ log2<p(w).
cp(n) 4 x

Le passage à l'intégrale de Stieltjes

I i
<p(n) 4 x

f* d{L(t))

2- log t

montre que le théorème découle de la

+ 0(1)

Proposition. On a

Soit

L(x) Y log2cp(n) ax log2x — 2ax log x + 0(x).
<p(n)4x

s(x) - Y.
108

Mn)

La démonstration de la proposition est organisée en trois étapes. Dans la

première on étudie S(x), et dans la deuxième L(x); dans la troisième on
exprime L(x) en fonction de S(x) à l'aide d'une convolution.

On conjecture que cette méthode se généralise pour donner le résultat

plus précis
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Y 1 ax + 0 - - xk J pour tout k > 0
<pàkx \(log *) /

De façon précise, on conjecture que les mêmes principes appliqués à l'étude

des quantités

S{xk_n_ z 108-WK-))
e, ^t). z l0^

tp(n)^x CPW <p(n)<x

conduisent au résultat

L(x, fc) £ log*(p(/i) ax Y(-1)''77-^77 (log x)t_i +
(p(n) ^ x i 0 (kl).

Je remercie J.-L. Nicolas de m'avoir fourni le thème de l'étude, G. Robin
de m'avoir aidé et M. Balazard pour de multiples remarques, notamment la
forme améliorée du lemme F 1). J'exprime mes vifs remerciements au referee

pour ses nombreuses et intéressantes suggestions.

2. Lemmes préliminaires

On aura besoin des lemmes suivants, obtenus par voie élémentaire.

Lemme A ([8], [11]). On a

v 1
1

p2(n) log n /logxX —t a log x + ay - £ + 0 —
n^xCpW n=l rccp(n) \ X

Lemme B. On a

^ 1 (p—l)2
Z "TA a~< T\ + 0(1).

n^xty(lî) p(p—l) + 1

pjfn

Démonstration. Il est prouvé dans [5] (Lemme 3.2 page 110) le résultat
plus général

Z El f1 + ^ log X + 0,(1).
n^x cp(n) qJrl\ Q(ÇL~l)J l

(n, l)- 1

En posant / p dans la preuve de ce résultat, 0,(1) s'explicite alors de la
façon suivante
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