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REPARTITION DES VALEURS DE LA FONCTION D’EULER

par A. SMATI

1. INTRODUCTION ET PRESENTATION DES RESULTATS

On désigne par ¢ la fonction arithmétique d’Euler, par y la constante
d’Euler et par a la constante

() (B3)
= 1 .
) H( i p(p*1)>

Les symboles p et g dénotent toujours des nombres premiers distincts,
et {(s) la fonction zéta de Riemann. Considérons

F) = # {nlom) <x}= Y 1.

on)<x

Plusieurs auteurs ont étudié cette quantité en utilisant des méthodes élémen-
taires ou des méthodes non ¢lémentaires. Traditionnellement on appelle
méthodes non ¢lémentaires celles dont les arguments utilisent I’analyse
complexe ou 'analyse de Fourier. Nous suivons ici cet usage.

P. Erdos et P. Turan [4] furent les premiers a montrer que

F(x) = ax + o(x) (x—+00);

leur démonstration, non élémentaire, est basée sur lexistence d’une fonction
de distribution pour n/@(n) prouvée par I. J. Schoenberg [10], mais ne donne
pas la valeur explicite de a. R. E. Dressler [3] a donné une démonstration,
¢lementaire, en approchant ¢(n) par les fonctions

o) = n [] (1 —3>,

p
o2

ou p, est le kK'*™¢ nombre premier. P. T. Bateman [1], utilisant des méthodes

d’analyse complexe, a fourni diverses estimations de F(x), dont la plus
précise est

F(x) = ax + O(x exp {— (1—¢) (% log x log log x> 1/2})
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pour tout ¢ positif, fixé. Enfin J.-L. Nicolas [9] a démontré que

F(x)=ax+0( x )
log x

La méthode utilisée est élémentaire et est due essentiellement a Tchebychef.
Elle consiste a étudier les sommes

1
Y logo(n) et >

P <x om<x P(n)

et a les comparer. Dans cet article, on généralise la méthode décrite par
J.-L. Nicolas et on démontre le résultat suivant:

THEOREME. On a

Fx) = 3 1=ax+0( a )

o(n<x logzx

Notons

L(x)

Y log*o(n).

o(n) < x
Le passage a l'intégrale de Stieltjes

C[* L)

montre que le théoréme découle de la

ProOPOSITION. On a

Lx) = Y log’p(n) = axlog’x — 2axlogx + O(x). "

o(n)<x

Soit

1
s = 3 e

 La démonstration de la proposition est organisée en trois étapes. Dans la
 premiére on étudie S(x), et dans la deuxieme L(x); dans la troisieme on
exprime L(x) en fonction de S(x) a Paide d’'une convolution.

On conjecture que cette méthode se généralise pour donner le résultat
. plus précis
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X
1 =ax + O(m>, pour tout k > 0.

p(n)sx

De fagon précise, on conjecture que les mémes principes appliqués a I'etude
des quantités

logh ™ !(x/p(n)) et L, k)= Y log‘p(n)

S(x, k—1) =
o(n)s<x (p(n) o(n)<x

conduisent au résultat

k!
(k—i)!

L k) = Y loghp(n) = ax ZO (—1)

on)<x

(log x)* 7" + Ou(x) .
Je remercie J.-L. Nicolas de m’avoir fourni le théme de I’étude, G. Robin
de m’avoir aidé et M. Balazard pour de multiples remarques, notamment la

forme améliorée du lemme F 1). Jexprime mes vifs remerciements au referee
pour ses nombreuses et intéressantes suggestions.

2. LEMMES PRELIMINAIRES

On aura besoin des lemmes suivants, obtenus par voie élémentaire.

LEmME A ([8], [11]). On a

1 © pn?(n)logn log x
—— = alogx + ay — — =+ 0 .
ngx (P(n) ! nzl n(p(n) X
LEMME B. On a
1 (p—1)°
Soom ooty 1 08¥ T oW

pin

Démonstration. 1l est prouvé dans [5] (Lemme 3.2 page 110) le résultat
plus général

: L \e®)

o — AdtT log x + 0,(1).
E , o) 13( q(q_1)> [ logx + 0,(1)
En posant | = p dans la preuve de ce résultat, 0,(1) sexplicite alors de la
fagon suivante
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