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REPARTITION DES VALEURS DE LA FONCTION D’EULER

par A. SMATI

1. INTRODUCTION ET PRESENTATION DES RESULTATS

On désigne par ¢ la fonction arithmétique d’Euler, par y la constante
d’Euler et par a la constante

() (B3)
= 1 .
) H( i p(p*1)>

Les symboles p et g dénotent toujours des nombres premiers distincts,
et {(s) la fonction zéta de Riemann. Considérons

F) = # {nlom) <x}= Y 1.

on)<x

Plusieurs auteurs ont étudié cette quantité en utilisant des méthodes élémen-
taires ou des méthodes non ¢lémentaires. Traditionnellement on appelle
méthodes non ¢lémentaires celles dont les arguments utilisent I’analyse
complexe ou 'analyse de Fourier. Nous suivons ici cet usage.

P. Erdos et P. Turan [4] furent les premiers a montrer que

F(x) = ax + o(x) (x—+00);

leur démonstration, non élémentaire, est basée sur lexistence d’une fonction
de distribution pour n/@(n) prouvée par I. J. Schoenberg [10], mais ne donne
pas la valeur explicite de a. R. E. Dressler [3] a donné une démonstration,
¢lementaire, en approchant ¢(n) par les fonctions

o) = n [] (1 —3>,

p
o2

ou p, est le kK'*™¢ nombre premier. P. T. Bateman [1], utilisant des méthodes

d’analyse complexe, a fourni diverses estimations de F(x), dont la plus
précise est

F(x) = ax + O(x exp {— (1—¢) (% log x log log x> 1/2})
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pour tout ¢ positif, fixé. Enfin J.-L. Nicolas [9] a démontré que

F(x)=ax+0( x )
log x

La méthode utilisée est élémentaire et est due essentiellement a Tchebychef.
Elle consiste a étudier les sommes

1
Y logo(n) et >

P <x om<x P(n)

et a les comparer. Dans cet article, on généralise la méthode décrite par
J.-L. Nicolas et on démontre le résultat suivant:

THEOREME. On a

Fx) = 3 1=ax+0( a )

o(n<x logzx

Notons

L(x)

Y log*o(n).

o(n) < x
Le passage a l'intégrale de Stieltjes

C[* L)

montre que le théoréme découle de la

ProOPOSITION. On a

Lx) = Y log’p(n) = axlog’x — 2axlogx + O(x). "

o(n)<x

Soit

1
s = 3 e

 La démonstration de la proposition est organisée en trois étapes. Dans la
 premiére on étudie S(x), et dans la deuxieme L(x); dans la troisieme on
exprime L(x) en fonction de S(x) a Paide d’'une convolution.

On conjecture que cette méthode se généralise pour donner le résultat
. plus précis
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X
1 =ax + O(m>, pour tout k > 0.

p(n)sx

De fagon précise, on conjecture que les mémes principes appliqués a I'etude
des quantités

logh ™ !(x/p(n)) et L, k)= Y log‘p(n)

S(x, k—1) =
o(n)s<x (p(n) o(n)<x

conduisent au résultat

k!
(k—i)!

L k) = Y loghp(n) = ax ZO (—1)

on)<x

(log x)* 7" + Ou(x) .
Je remercie J.-L. Nicolas de m’avoir fourni le théme de I’étude, G. Robin
de m’avoir aidé et M. Balazard pour de multiples remarques, notamment la

forme améliorée du lemme F 1). Jexprime mes vifs remerciements au referee
pour ses nombreuses et intéressantes suggestions.

2. LEMMES PRELIMINAIRES

On aura besoin des lemmes suivants, obtenus par voie élémentaire.

LEmME A ([8], [11]). On a

1 © pn?(n)logn log x
—— = alogx + ay — — =+ 0 .
ngx (P(n) ! nzl n(p(n) X
LEMME B. On a
1 (p—1)°
Soom ooty 1 08¥ T oW

pin

Démonstration. 1l est prouvé dans [5] (Lemme 3.2 page 110) le résultat
plus général

: L \e®)

o — AdtT log x + 0,(1).
E , o) 13( q(q_1)> [ logx + 0,(1)
En posant | = p dans la preuve de ce résultat, 0,(1) sexplicite alors de la
fagon suivante
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0,(1) = 282 . P =15y — oy,
p p

ou la constante impliquée par le symbole O est absolue. Le lemme B en
résulte alors en observant que

1 o(p) (p—1)?
1 —
H;( +q<q—1)) P P

LEMME C [2]. Ona

, tout H > 0.
long> pour tou

0*(x) =: ) log(p—1) = x + 0(

p<x

Remarque. Le lemme C est 'une des formes équivalentes du théoreme
des nombres premiers avec reste. Notre résultat dépend directement des
estimations élémentaires d’un tel reste, dont la premiere fut obtenue par
E. Bombieri en 1962.

3. DEMONSTRATION DE LA PROPOSITION

17 étape.
Etude de la somme S(x) =

LemMmE 1.1. Ona

2
nw (n) log n logp
=a),

y B et

S no(n) pp—1) + 1~
Démonstration. Soit, pour s > 0, la serie
2
2 pi(n)
F(s) = .
= 2, ot

Le théoréme du produit eulérien donne

1 ;
o =11 <1 ’ ps(p—l))' jl
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On a
1
F(1) = l—[<1 + p(p—l)) = a
et
) © n%(n)logn
Fl) = Zﬁ no(n)

Le lemme s’obtient alors en prenant la dérivée logarithmique de F(s) en
s = 1, c’est-a-dire

log p
F'(1) = — F(1 )
LEMME 1.2. On a
'"logn 1
—— = —glog?x + 0(1).
n;x oG = 29log (1)

Démonstration. Soit 'identité

LY )
®(n) c%l@(d)

ou p est la fonction de Mobius. On écrit

log n log n , p?(d)

3 _ ¥y ¥ _ ¥y p*(d) log (md)

n<x (P(n) n<x N dln (P(d) d<x d(P(d) m;c/d m

- l(i uz(d))logx + 0(1)»

2 \i=1 do(d)

et le lemme s’en déduit en remarquant que

o pd) Ly
dZﬁ do(d) B H<1 T p(p—1)> -4

Le résultat principal est le suivant:

S
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LEMME D. On a

Zlog(l —%> _y log p

p plp(p—1)+1)

1
S(x) = §a10g2x+ a\y —

g =Dlog(p-1)
P~ D+ 1)

)logx + 0(1).

Deémonstration. En utilisant la convolution

SCORMEEPI0

1
— 10g<1 — —) pourn = p,
p
avec =
p(r) 0 pour n # p,
on a

: n
1
Te) =: Y _———Og<@(”)> - ¥ Zp( )
n<x (P(n) n<x (P(n) djn

]

d<x p<x/d (p(pd)

En distinguant les cas ou p|d et p ¥ d et en faisant intervenir la quantite

o L IOg(l ‘215)

i<x 9(d) 3 p

(p, =1

~ on obtient

== 20,5 »
1 log| 1l — %)
v b U e v
d;x o(d) %;c . plp—1) (x) + V(x)
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En appliquant le lemme A on a

1
log <1 — —)
P/ 1og x + O(1).
p

Ux) = —a),

Quant & V(x), on a, par le lemme B,

1 1 !
og _; 1

V(x) = = p;x p(p—l) (g%/P @

B logp logp (p—l)log(p—1)>1
_a<zp(p—1)+1 Zp(p(p*l)Jrl) 2 p(p(p—1)+1) et

+ 0(1).

Le lemme D s’en déduit, en observant que

n
1
1 log n ©8 <(p(n)>

S(x) = log x n;xg(,g B ,,;x o) ,,;x*@@)——

et en appliquant les lemmes A, 1.1; 1.2.

2¢ étape.
Etude de la somme Lx) = Y log*>en).

o(n)Sx

Le résultat principal est le suivant:

LemME E. Ona

zlog<1 _11)> ¢ L

1 d
od<x () p od<x O(d)
1 1
+2zog(p 1) Foxy 8P log p 1

pp—1) o= o(d) p(p—1)? o= x<P(d)

1
+ 0 x(p(;\x e <2x)
= \o@

La démonstration de ce lemme nécessite les résultats auxiliaires suivants.
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LEMME 2.1. On a

log? o(n) = ¥ Ald) = Y. A (g)

ou la fonction A est définie comme suit :

Alp) = log*(p—1)

Alpg) = 2log (p—1)log(g—1)

A(p®q) = 2logplog(qg—1);a > 2

A(p*) = 2a—3)log?p + 2logplog(p—1);a > 2
A(p*q®) = 2logplogq, o >2, B =2

A(n) = 0 si le nombre de facteurs premiers distincts de n excéde 2.

Démonstration. On peut écrire

logpm) = > log(p—1)+ > logp=:X + Y.
pin p¥n
az2

Par conséquent
log?> o(n) = X* + 2XY + Y* avec
X? =) logp—1) + } 2log(p—1)log(g—1),

pln m= pq|n
Y?=3% Y logp+ ) 2logplogg,
@b m=patln
p%|n, pB|n T

et

2XY = ) 2log(p—1)logp + ) 2log(p—1)loggq.

p¥n m= pq%|n
=2 =2

La somme de ), Y log? p se réécrit, avec 8 = max {o, B},

pln (a,P)
a, p=2
Y. log®p Y 1\ = ) log?p(26—-3),
pd|n (o, B) pd|n
522 &, Pt 2 6>2

8 = max{a, B}

car les valeurs possibles de (o, B) avec 8 = max {a, B} sont
(2, 9), (3, 9), ..., (9, 0), (5, 2), (3, 3), ..., (8, 6—1) et sont donc au nombre de 26 — 3.

Finalement
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log? ) = ¥ log? (p—1) + ), 2log(p—1)log(g—1)

pln m= pq|n
+ Y 2logplog(g—1) + Y {(Qu—3)log?p + 2logplog (p—1)}
m=p%q|n p¥|n
az2 a=2

+ ), 2logplogg,
- m=p¥gB|n
a,p=2

comme annonce.

LEMME 2.2. On a, uniformément pour d = 1, x = 1,

X X X x/o(d)

2(p—1) = —1 ~ X 4o
e, (08 (=D = rlog <<p(d)> o@ 1og2(2">
o(d)

Démonstration. On a, en distinguant les cas ou p|d et p t d,
Y log*(p—1) = Y logt(p—1)+ Y log? (p—1).
o(pd) €x p S x/o(d) x/¢(d) <psSx/p(d)+ 1
(=1
Or

x/o(d)

p<x/p(d) 2~ p<t

L’intégration par parties et 'usage du lemme C donnent alors

% X X x/o(d)

log?(p—1) = —log{—= | — — + O ,
e e (cp(d)) o) 10g2(2x>
o(d)

2 2 X
log® (p—1) < log <w)—>

le lemme suit, en remarquant que

x/p(d)<p<xfod)+1
(p,d)=

LEMME 2.3.  On a, uniformément pour d > 1, x

\%

1
10g<1——>
Y 2log(p—1)log(g—1) = —— log — ) P

0g + — 2
olpid) <x od) ~ od) p !
_ay log p )X N 2x log (p—1) N x/o(d)

-1 ) od o wae pp—D C 1og2(£i >

69

Y log*(p—1) = J log (t—1) d(6*(t)), avec 6*) = > log(p—1).
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Démonstration. Soit y = x/o(d). Dans les quelques lignes qui suivent on
écrira, pour simplifier, X au lieu de £ 2 log (p—1) log (¢— 1), et 'on conviendra
sans I’écrire que p < g.

Soit la somme ) . En distinguant les cas pg|d et pg ¥ d et en
o(pgd) S x

observant que si d’ | d alors @(dd’) = d'¢(d), on obtient

-y -3+
o(pgqd) < x pPqasy pasy o(pgd) < x
pgtd pqtd

En distinguant les cas p|d et gxd; pkd et q|d; pkd et qfd
on obtient

I )

pqgsy pPasy Pqs<y
patd (p,d)=1 (g, 9)=1, p|d

et

= > + — Y, +
o(pgd) < x (p—1L)gsy pla—1)=y (p—1)g=y (p—1)(g— 1)<y
pafd (p.d)=1 pld,(g,d)=1 (p,d)=1,(q,d)=1 (p,d)=1,(g,d)=1

En rassemblant ces sommes, on obtient

A B —z)
o(pgd) < x P4y (p—1)qsy P4y plg— 1)y Sd

(p,d)=1 (p,d)=1 pld, (g, d)=1 pld, (4

=:A1+A2+A3+A4_

; ( _
(r—1)@—-1)=y (p—L)g=<y
(p,d)=1,(g,d)=1 (p,d)=1,(g,d)=1

La somme A4, s’écrit

2 Y log(p—1) Z log(g—1) — ., log(p—1) Z log (¢—1)

p<Vy q\ p<Vy <y
— 2 2log’ (p-1).
p<+vy :
‘ 1
 Les deux premiéres sommes s’écrivent l

2 1 —1
2 Y o @)mg(p—l)—(e*(\/?) =y y 20D

p<vy p<Vy p

y
_ ol ——
a <1og2 (2y))

par application du lemme C. Mais, on a | i|
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log<1—l>
M___ zlig_p_+z F .

p<Vy p p<Vy p p<+y p

L’estimation classique (cf. [7] § 55)

2l (525 ol
= —logy+|—7v-— + 0| —5e
2, T L) log? (2)

et les estimations

et

donnent alors

A, = ylogy +\2)>]

Passons a A,, qui se réecrit

A, =2 % log(p—1)6* (—fﬁ— Y log(p—1) 6*()

Pt gl
—(2 Y log(p—1)0* X)— > log(p—ne*(p)).
p<+y P p<y
(pd)=1 (p,d)=1
On a
Y log(p—10*p) — Y, log (p—1)0*(p) < /y log/y .
p— 1<y p<Vy
(p,d)=1 (p, =1

71

Quant aux autres termes, on les estime a l'aide du lemme C; on obtient
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B log(p—1) y
A=W L -0 T ¢ (log2 (2y)>‘

Finalement, un calcul semblable donne
y
= 2 log(p—1) log(g—1) = O (———)
pSZJy _<q§1+ N log® (2y)

d
Pl (g, d) =1

_ofl Y
As O<10g2 (2y)>’

ce qui termine la démonstration du lemme.

et

LEMME 2.4. On a, uniformément pour d > 1,x = 1,

X log p X logp
2logplog(g—1) = 2 + 2 —
> > plp— 1) o(d) <p,§=1 pp—1)*

o(p*gd) S x (p(d)
. ( 2x )
og
o(d)

a=2
Démonstration. Comme précédemment, on omet I’écriture de 2logp
log (9—1) dans les quelques lignes qui suivent, ou 'on conviendra, également
sans Pécrire, que p # g et que o = 2.
En distinguant comme précédemment les cas ou p|d et ptd puis

+ 0

. X
q|detqktd, on obtient, en posant y = —,
¢(d)
s -3+ 3z -5 )+(x - 3]
o(prgd) < x peg<y pe~ Yp—1)g<y prgsy p*g— 1)<y <
(p,d)=1 (p,d)=1 pld,(a,.d)=1  p|d,(g.d)=1

+( Z — Z >::B1+B2+B3+B4.
p*~ U p—-1)(g— 1)<y e~ Yp—1)g<y
(p,d)=1,(g,d)=1 (p,d)=1,(q,d)=1

On a, avec le lemme C,

B, =2 ) logp Z log (g—1)
) p°‘<\/y Q\pa

q¥p
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2y

=2 ) logp %+0 £ + O (log (p—1))
S zﬁwﬁ(ﬁa

logp y
:”Zm%n+oﬁ%%m)

Ensuite,

B,=2 Y logp Y log(g—1)—2 ) logp ) log(g—1)

P~ p—1)SVy ST prsVy a<%
(p,d)=1 Pﬁbép 1) (p,d)=1 HI;
=2 ) logp Y. log(g—1)— ) log(g—1) + 0(10g(p—1))}
a<Jy y Y
(p,lfz):l/,ypld IS T(p—1) 453

+ 2 Y log p Y log (g—1)
pe—p-1)<Vy

a>y
(. ) =1 a7 P

log p ( y )
=2 +0|——),
Y b o1 log? (2)

avec trois applications du lemme C pour la derniére égalité. Finalement,

y
STy
9% pr=I(p—1)

By =2 Z_logp{ >, logg-1) - ¥ log(q—l)}

pr<Vy g<y/p*+1 q<y/p*

q¥p,(g,d)=1 qg¥p,(g,d)=1
y
= 0 (Jylogy) = 0(———)
Jy log? (2)

et de la méme fagon,

B4=0<_JL_)
log? (2y)

ce qui termine la démonstration du lemme.

LEMME 2.5. On a, uniformément pour d > 1,x > 1

3

Y, {R2a—3)log’p + 2logplog(p—1)} = O (\/ x/¢(d) log? (—(ﬁ))

o(ptd) < x
az2
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1
Démonstration. En observant que, d’une part ¢o(p*d) > 3 p*o(d) et d’autre

1
)/ log 2 si = p*p(d) < x, on obtient

2x
part o < log( 5

(d)
> <(20c—3) log? p + 2log plog(p— 1))

cp(p“d) Sx
U. = 2

< ; ((20(—3)10g2p + 2logplog(p—1))

<
P*S o)
oz 2

< log< ) Zz log? p « /x/¢(d) log? ( (d))

LEMME 2.6. On a, uniformément pour d > 1, x > 1

> 2logplogg = ( /x/@(d) log ( (d)>>

o(prgBd) <x
«=2,p>2

Démonstration. De @(p*qPd) = (p—1)(q— 1)*@(d), on déduit que

> 2logplogq « > log plog g «
RN (P B30
logp
>, logp )3 logq « /x/od) Y = ——m

_ 1\/2
(p— 1) <VE/o@d (- ye<vae@ P~ 1)
>2 o= 2

X
a>2 (a= DP <G —T)ip@)
B=2

X
< +/x/o(d) log (&d—)> :

Démonstration du lemme E. D’apres le lemme 2.1, on peut écrire

n
w- ¥ Ta(l)- 3 ¥ aw.
o(m)<x d|n o(d)<x (p(ddd")sx

 Or
Z Ald) = Z IOg2 -1 + Z 2log(p—1)log(g—1)
(p(ddd")sx Hpd)sx o(pgd) S x




FONCTION D’EULER 75

+ Y 2logplog(g—1) + {(20.—3) log? p + 2 log p log (p—1)}

o(pogd) S x o(prd) S x
a=2 a=2

+ Y 2logplogg

o(p*gPd) < x
az2,p=2

L’application des lemmes 2.2 4 2.6 termine la démonstration.

3¢ étape.

LemMe F. Ona

log (x/¢(n))
1 =
o(m)sx
1
2 Y > = O(1)
o(n)Sx X
@(n) log? (—)
o(n)
1
3 .
) <p(;;<x v alogx + 0(1).
- Démonstration.

1) Poury > 1,logy < y, donc

log (x/p(n) I 1
2 em A W—xo@ = o) e IP)).

o(n)sx o(n)<x

2) Le passage a lintégrale de Stieltjes et lintégration par parties
donnent:

1 J dF) P
1" tlog? (?) - vlogh2
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car F(x) = O(x).

3) (cf. [9]).
La proposition suit alors de la remarque
lo 1
2L/ _ o 4 5 log (x/0(m)
o(n) sx (p(n) n>x (P(n)
o(n)<x
et des lemmes E, D, F, B et H.
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