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A REMARK ON MEROMORPHIC DIFFERENTIALS
IN OPEN RIEMANN SURFACES

by Pascual CuTILLAS RIPOLL

After the appearance of the well known paper [2] of Gunning and
Narasimhan, wherein they proved the existence of a locally univalent
holomorphic function on an open Riemann surface V, several generalizations
of this theorem have been made by using slight modifications of the
Gunning-Narasimhan arguments. One of them was that of Kusunoki-
Sainouchi [3] who showed that the divisor and periods of a meromorphic
differential on V can be prescribed; and, another was obtained by
Schmieder [5] on demonstrating that there exists a holomorphic function
on V with divisor and ramification divisor prescribed (provided that they are
compatible in an obvious sense).

Our purpose on writing this paper is to show that in fact the Gunning-
Narasimhan reasoning can also be slightly modified in order to prove
something which seems to have not appeared in the literature until to now,
and is a generalization of all the previously cited results. Namely, and
roughly speaking, that the divisor, singular parts and periods of a mero-
morphic differential on ¥ can be arbitrarily prescribed.

Following Kusunoki-Sainouchi we shall consider in V a canonical
exhaustion, that is, a sequence (U,) of relatively compact connected open
subsets of ¥ such that for every neN, (1) U, < U,+1, 2) V — U, has no
relatively compact connected component, (3) U, and ¥ — U, have a common
boundary formed by a finite set of analytic dividing curves (i.e., each of
them is a Jordan closed curve which disconnects V). We shall also consider
a family F = {4;, B;, C;:ie N} of analytic closed curves in ¥V defining a
basis of the first homology group H,(V) and verifying: (4) with the standard
notation for intersection numbers and denoting in the same way the
anterior curves and the corresponding elements of HY(V), A, x B; = 3;;,
A X A; = By x B; = 0 for all i,jeN, (5) every C, is a dividing curve.
If in addition, F verifies also, with respect to a fixed canonical exhaustion (U,)
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of ¥, (6) all 4; and B; are disjoint with | ] dU,, (7) every C; is a boundary

n=1
contour of some U,, and (8) the curves of F contained in U, form
a basis of H,(U,) (being U, considered as a bordered Riemann surface),
then F will be called (following also Kusunoki-Sainouchi) a canonical
homology basis in V with respect to (U,). From now-on, we shall consider
a fixed canonical exhaustion (U,) of V and a fixed canonical homology
basis F in V with respect to (U,) such that the representing curves A;,
B; verify further that A; () B; consists on a unique point for every ie N,
and A; (Y A; = B;(\B; = A;()B; = @ forall i,je N with i # j.

Let us fix also some (arbitrary) ne N and let {a,, .., o} and {B,, .., Bs}
be the subsets of F formed by the curves contained in U, and U,,, — U,
respectively. Let K be U, | J By | . | B,; then reasoning as in Lemma 2 in
Gunning-Narasimhan [2], one sees that ¥V — K has no relatively compact
connected component and so by a theorem of Bishop [1], every continuous
complex function in K which is holomorphic in the interior of K can be
uniformly approximated in K by holomorphic functions in V. The analogous
conclusion for the compact subset Q = o, () ... () o, of V is also valid.

LEMMA 1. Let L be a compact subset of V such that V — L

o0
has no relatively compact connected component, and let & = ) mpb; be a

j=1
divisor on  V, with m; >0 and b;eV — 0L for every jeN. Let =t
be a continuous complex function in L, holomorphicin L (the interior of L)
and with divisor > 0|;. Then there is a sequence of holomorphic functions

in V with divisor > & which approximates t uniformly in L.

Proof. Consider a holomorphic function g in V with divisor 6, and
apply Bishop’s theorem to the function tg ™! in L.

0

From now on we shall consider a divisor § = ) m;b; as in Lemma 1,
=1
with none of the b; contained in any curve of F. Witjhout loss of generality it
can be also supposed that b; does not belong to the boundary of any U,
for every j e N.
The proof of the following lemma is almost a repetition of that of
Lemma 1 in Kusunoki-Sainouchi [3] (which, in turn, is strongly inspired in

Gunning-Narasimhan [2]). We include it for the sake of completeness.

LEMMA 2. Let ® be a meromorphic diﬁ”eren'tial on V having no pole in
any curve of F. Then, for every € >0 and py,.., p,€C, there exists a
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holomorphic function f on V such that (1) |f|<¢ in U,, (2) the
divisor of f is =6, and (3) ja_ o = fa_oa for i=1,..,r, 'fBi o =
for i=1,.,s.

Proof. Let uy,.., u,., be continuous functions in o, ..., %, By, -, Bs
respectively, with mutually disjoint supports, and such that | w;o # 0 for
i=1,.,r and ‘ff’i ertin = ui,fﬁi u, ;e o #0 for i = 1, ..l.,s; and for
i=1,.,r (resp, i=r+1,..,r+5s) extend each u; to K (mantaining the
notation) in such a way that it is identically zero in K — «o; (resp. K—J;_,).

Let @;: C"** — C be the holomorphic function defined fori = 1,...7 + s

by
r+s
f exp(Z zlul>u) if i<r,
o =1
r+s

J exp(Z z,ul>0) it i>r.
=1
Bi—r

Then, for a = (0, .., 0,1, .., 1) e C"*5, with the r first components having
the value 0, we have
f ® if i<r,

(-pi(Zl 3 vevy Zr+s) =

0;(a) =
J o =, if i>r,
Bi-r
J u;0 # 0 if i<r,
0, 1
azi (a) -
f ueo #0 if i>r,
Bi-r
00;
o, @ =0 if Q]

J

Leto = (@1, ., §,45): C** — C"*S. Then ¢(a) = (I, 0 s [0y, s ),
and it is clear that the jacobian (determinant) of ¢ at a is not zero.
Now, Lemma 1 shows that for every i = 1, .., r there exists a sequence
;{ i.mimen Of holomorphic functions on V with divisor > d (notations as
Just before Lemma 1) which aproximates u; uniformly in Q; and so, there
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exist terms f;, ..., f, of the sequences {fi ..}, ., {f;.m} respectively, such that
on setting

r N
J exp(Z z f; + Zz,+lu,+l)co if 1<i<r,
o l =

=1 =1

(Di(Zl 9 weey Zr+s) =
¥

S
J exp(Z z f; + Zz,+lu,+,>oa if r<i<r+s,
l 1=1
Bi-—r‘

=1

and ® = (®,,..,®D,,.,): C""* - C"* then ®(a) = ¢(a) and the jacobian of @
at a is not zero. Let, for [ = 1, ..., 5, {9, m}men D€ @ sequence of holomorphic
functions on V, with divisor > &, which aproximates u,,, uniformly in K;
and let

f exp(Z 2, f; + erﬂgl,m)m if 1<i<r,
- I =1

=1

\lji, m(Z) =

r

j eXp(Zzlﬁ+ er+lgl,m >03 if r<i<sr+s,
! =1
Bi—r

=1

and Y, = (Wy s oo Vyssm): €75 = C"75 Then, all \,, are holomorphic, and
the sequence () converges uniformly to @ on every compact subset of

_ . 0Dy, .., D, _
C"*s. Therefore, as the jacobian 6( ( — +)) (a) is not zero, then for every
oy 5 oo T g

vy > 0 there exists my(y) € N such that m > my(y) implies the existence of a
point a,, = (ay s - Gris m)> With || a,, — a | < y and such that ,(a,) = ®(a)
(see, for instance, Proposition 5 of page 79 of Narasimhan [4]) and so,
since ®(a) = o@(a), then taking into account that (g, ,) — O uniformly in

U, for | =1,..,s, it is easy to see that by choosing a suitable y and

r

putting f = Y @, /i + D, Qi1 m31m> With sufficiently large m > mq(3), we
=1 =1

obtain a function with the required properties.

Let now 8q = Y, ma;, with n; > 0, be a divisor in ¥V — {b;};en. Let,

i=1

for every j € N, z; be a holomorphic coordinate in some open neighbourhood
of b; such that z;(b;) = 0, and let P;(1/z;) be a polynomial in 1/z; of
degree m; without independent term. Then, there exists a meromorphic
differential @ on V whose divisor is 6, — 6 and whose “singular part”
at b; is precisely P;(1/z;)dz; (ie, ®—P;(1/z;)dz; has no singularity at b))
~for every jeN. For, we may consider an abelian differential o, on V
with precisely the singular parts defined by the P;(1/z;)dz; and multiply
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it by some meromorphic function with suitably chosen zeroes and poles
in V and with “ones” of sufficiently large multiplicities at the points b;.
Such a function exists because a meromorphic function on V with zeroes
and poles prescribed can be multiplied by the exponential of a suitable
holomorphic function in-order that the product has the desired “ones”
with at least the desired multiplicities.

With the notation of the previous paragraph, we can already state the
following.

THEOREM. There exists a meromorphic differential in 'V with divisor
8o — 8, with precisely the singular parts defined at the {b;}n by the
P;(1/z;)dz;, and with prescribed periods at the cycles of the canonical
homology basis F.

Proof. By applying an easy induction argument based on Lemma 2 to
the sequence (U,) we obtain a holomorphic function 4 in V¥ with divisor
> § and such that "o has the prescribed periods. Since ¢* has at every b;

a “one” of multiplicity > m;(jeN), we also deduce that e"w has the same
singular parts that o.

COROLLARY. For a meromorphic function f in V it is possible to
prescribe the divisors of f and df, provided that they are compatible
(in the obvious sense), and the periods of dlog f (being of course integral
multiples of 2mi ) along curves defining any canonical homology basis of V
(whenever these curves contain none of the zeroes or poles of f ).

Proof. If a meromorphic differential ® in V is chosen with only simple
poles (corresponding to the zeroes and poles of f), suitable integral residues
at these poles, suitable zeroes (corresponding to the zeroes of df at which f
does not vanish) and the prescribed periods, it must be of the form
dlog f, with f having all desired properties.

MR ARE TR BT, ~ o B L TR

REFERENCES

[1] BisHop, E. Subalgebras of functions on a Riemann surface. Pacific J. Math. 8
(1958), 29-50.

[2] GunNING, R.C. and R. NARASIMHAN. Immersions of open Riemann surfaces.
Math. Ann. 174 (1967), 103-108.



60 P. CUTILLAS RIPOLL

[3] Kusunokl, Y. and Y. SaiNoucHI. Holomorphic differentials on open Riemann
surfaces. J. Math. Kyoto Univ. 11 (1971), 181-194,

[4] NarasiMHAN, R. Several complex variables. Chicago Lectures in Mathematics.
The University of Chicago Press. 1971.

[5] Scumieper, G. Funktionen mit vorgeschriebenen Null and Verzweigungsstellen
auf Riemannsche Flachen. Arch. Math. 37 (1981), 72-77.

(Regu le 10 aout 1988 )

Pascual Cutillas Ripoll

Universidad de Salamanca
Departamento de Matematicas
Plaza de la Merced, 1-4

37008 Salamanca (Spain)




	REMARK ON MEROMORPHIC DIFFERENTIALS IN OPEN RIEMANN SURFACES
	...


