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THE CANTOR SET AND A GEOMETRIC CONSTRUCTION

by Marco Pavone

Introduction

The Cantor ternary set consists of all those real numbers a in [0, 1]

which have a ternary expansion x ^T=i ün^n ^or an never 1-

Equivalently, C can be obtained in a purely geometrical fashion by first

removing from [0, 1] the middle third (1/3, 2/3), then removing the middle

thirds (1/9, 2/9) and (7/9, 8/9) of the remaining intervals, and so on
(C will be exactly the complement of the countable union of the removed

intervals). If x Y^=xanßn in geometric interpretation of its

ternary expansion is that x is the unique point in [0, 1] which is reached

by first staying to the left or to the right of (1/3, 2/3) if a1 0 or
a1 — 2 respectively, then staying to the left or to the right of the next
removed interval if a2 0 or a2 2 respectively, and so on. It follows from
the construction that C is a nowhere dense closed subset of [0, 1].

A well known property of C is that any real number in [0, 2] can be

written as the sum of two numbers in C. The purpose of this note is to give
an elementary proof of C + C [0, 2] which only uses the geometric
definition of C. A refinement of the proof shows in fact that for any k
in [0, 2] there exists either a finite or an uncountable number of pairs
x, y from C such that x + y k. We also discuss the analogy between
this decomposition result and certain properties of continued fractions.

The geometric construction

We set, as usual, C x C {(x, y)eR2:x,ye C}. Then C + C [0, 2]
can be geometrically restated as

for any k in [0, 2] the line x + y k intersects C x C in at least
one point.
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Let's agree to call a line segment in R2 "horizontal" or "vertical" if it
is parallel or perpendicular to the line y x respectively. Consider a

sequence L0,Ll,L2. of continuous polygonal curves in R2 with the

following properties (see fig. 1-3):

(a) />„ is contained in [0, 1] x [0, 1] for all n, and is composed by
horizontal and vertical segments only.

(b) The vertices of Ln belong to C x C for all n.

(c) The endpoints of Ln are (0. 0) and (1, 1) for all n.

(d) Lach Ln contains 3" horizontal segments, each of which has length
21 2 3".

(e) l or all n, and for any k in JO, 2 3", 4 3" 2J the line x + y k

contains a vertical segment of L„.

(f) Lor all /i, and for any k not in JO, 2 3", 4 3" 2) the line .v 4- y k

meets at most one horizontal segment of Ln.

Figure 1
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Suppose first that such a sequence exists. Then property (*) is satisfied.

Indeed, fix k in [0, 2] and let r denote the line x + y k. If k is in

{0,2/3", 4/3",..., 2} for some n, then r meets C x C by (e) and (b) ;

otherwise, for any positive integer n there exists by (f) a unique horizontal

segment of Ln that meets r. This implies, by (d) and (b), that dist (r, C x C)

< 21/2/3" for all positive integers n, that is, dist (r, C x C) 0. Then r meets

C x C by a standard compactness argument (I recall that C is a closed

subset of [0, 1]).

Figure 2

We now proceed to the heart of the argument, that is the construction
of the sequence {Ln}n. All we need is in fact the first step of an induction

process. Let L0 be the line segment with endpoints (0, 0) and (1, 1), and let Lx
be the polygonal with vertices (0, 0), (1/3, 1/3), (0, 2/3), (1/3, 1), (2/3, 2/3)
and (1, 1) (see fig. 1). In general, let Ln+1 be the curve obtained from Ln

by performing on each horizontal segment of Ln the same modification that
was performed on L0 to get Lx. In other words, we replace the generic
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horizontal segment of Ln with endpoints (x, y) and (x + 1/3", 3;+1/3") by the
polygonal passing through the points

(x, y), (x+ 1/3"+ \ y+1/3"+1), (x, y + 2/3" +1), (x +1/3"+ \ y +1 /3"),
(x + 2/3"+ \ y + 2/3"+ x) and (x +1/3", y +1/3")

(see fig. 2 and 3). It is then apparent that {Ln}n satisfies the hypotheses
(a),(f) stated above.

0 1/9 1/3 2/3 1

Figure 3

An easy modification of the previous construction gives us more
information on the way a number in [0, 2] can be written as the sum of
two numbers in C. For every map p from N\{0} into {0, 2} we construct
a sequence {L^]}n of polygonal curves with properties (a),..., (f). The idea is
simply to add to the previous construction a choice between "left" and
"right" at every step of the induction. What one ends up with is exactly a
two-dimensional version of the geometric construction of the Cantor ternary
set. We proceed as follows.
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y x (see figure 4). If ja is a map from N\{0} into {0, 2}, we define

L0, and for any nonnegative integer n we let be the polygonal
obtained from by replacing each horizontal segment of Ln by a

(normalized) copy of L1 or Ml5 according to whether p(n+l) 0 or
p(n + l) 2 respectively. For example, if p {0,0,0,...}, we obtain our
original sequence {Ln}n (fig. 1-3), and for p {2, 2, 2,...} we get its mirror
image with respect to the line y x. For p {0, 2, 0, 2,...}, we obtain
castle-like polygonals as in figure 5.
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For all p let L(M) denote the uniform limit of the curves n 0,1,....
Then L(M) is a continuous curve in [0, 1] x [0, 1] with endpoints (0,0)
and (1, 1), and with the property that, for any k in [0,2], the line

x + y k intersects L(M) in some point of C x C. Viceversa, given any point
(x, y) in C x C, there is some sequence p such that (x, y) lies on L(M).

To see this, note that the ternary subdivision of [0, 1] that generates C

produces a corresponding subdivision of [0, 1] x [0, 1] that generates
C x C. At the n-th step, the subset Gn of [0, 1] x [0, 1] that contains

points of C x C is the union of 4" squares (the black squares in figure 6

for n 3). It is clear that Gn contains the vertices of the curves
for all p (compare figures 3 and 6). The conclusion is now immediate.

+f
+

W':+
1+

+&
ÜH

m

+ +
SS.IP? M

1/9 1/3

Figure 6

Note that if pA is the sequence obtained from p by turning all the
0's in 2's and viceversa, then the line x + y k intersects L(M) in a point
(x, y) if and only if it intersects L(^ } in a point (y, x); in other words,
pA does not give us any new information on the decomposition of k as

a sum of numbers in C. We shall therefore restrict our attention to sequences

p with p(l) 0 (i.e. to curves L(^ above the line y x).
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Fix k — 2h in [0,2],/z > 0, and let h be the unique

infinite ternary expansion of h. We claim that the equation x + y k

has a finite or an uncountable number S(k) of solutions in C x C

according to whether the cardinality c(k) of the set {neN\{0};an 1} is

finite or infinite respectively. In fact, the exact formula is S(k) 1 if
c(k) 0 or 1, and S(k) 3(2c(k)~2) otherwise.

Let r be the line x + y k, and let n be any positive integer. With the

notation set above, and with the help of figure 6, it is easy to see that

an 1 if and only if Gn meets r in twice as many squares than Gn _ x.
Equivalently, an — 1 if and only if, for all p, r meets L(^21 in the middle

third of one of its horizontal segments ; in other words, an 1 if and only if
at the n-th step of the construction the curves meet r in twice as

many points than the curves Lj/2 1. If an ^ 1, the choice between p(rc) 0

and \x(n) 2 at the n-th step does not produce any new intersection point.
This shows that c(k) is finite or infinite depending on whether r meets
the curves L{^ in a finite or an uncountable number of points, and our
claim is proved.

Example. If k 2h 28/27 (h 0.11122... in ternary form, with
2 repeated infinitely often), then S(k) 6 and the possible decompositions are
(in ternary form) k 1 + 0.001, k 0.222 + 0.002, k 0.221 + 0.01,
k 0.21 + 0.021, k 0.202 + 0.022 and k 0.201 + 0.1.

In the case where c(k) is infinite, we saw that each new occurence of 1

in the sequence {an}n produces a new choice between p(n) 0 and p(n) 2.

In terms of the decomposition k x + y, with x XT=i anb

y Zr=ic"/3"' tb*s corresponds precisely to choosing bn cn 0 if
0, bn cn 2 if an 2, and finally bn 0 and cn 2 {bn 2

and cn 0) if an 1 and ja(n) 0 (p(n) 2). An interesting case is
k 1, that is, h 0.1111.... In this case, if 1 x + y is the decomposition
determined by the choice of some sequence p, then one has precisely
* II: x mßn-

Remark. The construction of the sequence {Ln}n (fig. 1-3) is similar to
the ones which define by induction the continuous nowhere-differentiable
function on [0, 1] or an infinite homogeneous tree with finite degree. They
all provide examples of those geometric objects which are nowadays called
fractals. A fractal has the property that each of its portions looks exactly
like a reduced copy of the whole thing. This "homogeneousness" property
has often an algebraic counterpart : in the case of the Cantor ternary set,
the N-th step of its geometric construction corresponds to the fact that
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every number of the form ^]^ + 1an/3n, ane{0,1,2} is obtained from the

number an/3n by making a choice between an+1 0, an+1 1 and

an + 1
2. The crucial point is that the nature of this choice does not

depend on the number and does not depend on N. In F„, the free group
with n generators, the choice that one makes to form a word of length
N + 1 from a word of length N is independent of either the word or N.

Accordingly, the graph of F„ is a homogeneous tree (of degree In).

Cantor sets of continued fractions

Cantor point sets play an important role in measure theory and in the

theory of continued fractions. The Cantor ternary set C is a basic example
of an uncountable Borel-measurable set whose measure is zero (see, for

example, [5], p. 44 and 63). An important object in the theory of continued
fractions is the set Fiji) (A c [T), 1] x £0, ci^, d2 •••] and ci^ ^ n for
all i}, that is, the set of continued fractions of bound n (n being any
positive integer). The fact that F(n) is a Cantor point set depends on the

property that if

x - [0; al9..., am, bm + l9 bm + 2,...] and y [0; ax,..., am, cm + x, cm + 2,...]

are in F{n), then x < y (x>y) if bm+1 < cm + 1 and m is odd (m is even).

In particular,

min F(n) [0; n, 1, n, 1,...], max F(n) [0; 1, n, 1, n,...]

and F(n) can be obtained by first removing from (0, 1) the open intervals

(0, [0; n, 1, n, 1,...]) and ([0; 1, n, 1, n,...], 1),

then removing the intervals

([0; n, n, 1, n, 1,...] [0; ft-1, 1, n, 1, n,...]),

([0; n—1, n, 1, n, 1,...] [0; n-2, 1, n, 1, n,...]),

([0; 2, n, l,n, 1,...] [0; 1, 1, n, 1, n,...]),

and so on (see [3], p. 971).

A theorem of M. Hall Jr. says that F(4) + F(4) + Z R ([3], theorem 3.1),

which is the analogue of C + C [0, 2]. Hall actually proves more general

theorems on the nature of L(A) + L(B) for arbitrary Cantor point sets

L(A) and L(B). One of the main applications of Hall's theorem is the result



THE CANTOR SET 49

that the Markoff spectrum contains every real number greater than 6

(cfr. [1], p. 454). The number 6 has successively been replaced by a best

possible value, called Hall's ray («4.5), by employing a refinement of Hall's

original theorem (see [2]).
The set F(2) + F(2) has been used in [4] to prove the existence of certain

gaps in the lower Markoff spectrum. It is the proof contained there that

originally inspired our geometric construction.
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