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T(F) + F*T(io) = T(jo) + jO*T(Id)

(see [Ml, Lemma 7.8]). Here F, jo, and Id are all simple homotopy
equivalences; so these Whitehead torsions vanish. Hence it follows that
1ig) = 0, because F,: Wh(rn,(U") - Whn,(E(LxI)) is an isomorphism.
This means that U’ is an s-cobordism. Therefore (S"*?, K) € Io(M, L) by
Lemma 1.6. Q.E.D.

§ 5. TyYPE 3 CASE

In this section we treat the case where <m> or [m] is of order p
(p is not necessarily a prime number). We begin with

LeMMA S5.1. Suppose [m] is of order p. Then if (S*"? K)eI(M, L),
then (S"*2,K), is a homotopy (n+2)-sphere.

Proof. Let r be the order of Tor H,(M —L;Z), and let v be the canonical
epimorphism nn,(M —L) » H(M—L;Z) ® Z,. Since the order of v(<m>)
is p, we obtain the desired result by an argument similar to the proof of
Lemma 2.1. Q.E.D.

If p > 2, there are infinitely many knots (S**2, K) such that (§""?, K),

is not a homotopy (n+2)-sphere; so Lemma 5.1 shows that I(M, L) = A,
for such (M, L). 4

The rest of this section is devoted to looking for a non-trivial knot in
I(M, L) or I4(M, L). We will extend Proposition 3.6 and 4.2 to the case
where <m> is of order p. Lemma 5.1 reminds us of counterexamples to
the generalized Smith conjecture.

Let (S""2, K) be an n-knot which bounds a disk pair (D"*?, D) such
that (D"*3, D), is a homotopy (n-+3)-disk. Since (§**?, K), is the boundary
of (D"*3, D),, ("% K), is a homotopy (n+2)-sphere. If n + 3 > 5, then
(D"*3, D), is diffeomorphic to D"*? and hence (§**?, K), is diffeomorphic to
A

The p-fold branched cyclic covering (D"">, D), supports a Z,-action with
the branch set D as the fixed point set. Let E(D), be the exterior of D
in (D"3 D), and let p:S' — E(D), be an equivariant embedding of a
meridian of D in E(D),, where the standard free Z,-action is considered
on S'. Since p is a homology equivalence and equivariant, the Whitehead
torsion of p is defined in Wh(Z,). Clearly it is independent of the choice
of p; so we shall denote it by t,(D"*3, D).

The following theorem is an extension of Proposition 3.6.
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THEOREM 5.2. Suppose <m> is of order p (p may be equal to 1)
for (M"*2 L") and n>=4. Then (S""% K)ely(M,L) if it bounds a
disk pair (D"*3, D) such that

(1) (D""3, D), is diffeomorphic to D"*3,

(2) pyt,(D"73, D) = 0,
where p,: Wh(Z,) —» Wh(ny (M —L)) is the homomorphism induced from
a homomorphism p:Z,— n(M—L) sending a generator of Z, to
<m> en,(M—L).

Remark 5.3. (1) For each p, there are infinitely many n-knots satisfying
the conditions (1) and (2) in Theorem 5.2. For example the Z -orbit spaces
of Sumners’ knots [R, p. 347] (which are counterexamples to the generalized
Smith conjecture) are the desired knots. In fact, 7,(D"*? D) = 0 for them.

(2) If p=1,2,3,4, or 6, then Wh(Z,) = 0. Hence the condition (2)
of Theorem 5.2 is trivially satisfied in these cases.

Proof of Theorem 5.2. We shall observe that the proof of Proposition 3.6
works with a little modification. As before E(L x I D) can be viewed as a
cobordism relative boundary between E(L) and E(L # K). We shall check
that this is an s-cobordism.

The condition (1) implies that

(5.4) n,(ED))/ <mP> ~ Z,

where a meridian of D in D"*3 is also denoted by m. Hence it follows
from the decomposition (3.7) that

(5.5) m(E(Lx I § D)) ~ m,(E(L x I)) . ,(E(D))

2

my(E(L x D) * my(E(D))/ <m?>
(as <m> is of order p in m,(E(L x I)))
~ ,(E(L x I)) (by (5.4))

This implies that the inclusion map i: E(L) = E(L) x {0} - E(Lx I 4 D)
induces an isomorphism ,(E(L)) — m,(E(L x I § D)).

We consider the map 1: E(L) — E~(L x I § D) lifted to the universal cover.
Let q: E(Lx14D) —» E(LxI4D) be the covering projection map. By (5.5)
g Y(E(Lx1I)) is exactly the universal cover E(LxI). As for q~(E(D)) we
need a little consideration. The above observation (5.5) shows that the image
of j,.: m,(E(D)) — my(E(L x I §D)) is isomorphic to Z,, where j is the inclusion

~
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map. We shall identify j*nl(E(D)) with Z,. Remember that Z, acts freely
on E(D), as covering transformations.

Claim 5.6. q *(E(D)) = E(D), x I1, where the right hand side denotes

the orbit space of E(D), x IT by the diagonal Z,-action defined by
s-(x,9) = (xs™ 1, sg) for se Z,, x € E(D),, and g € IL.

Proof. The Il-covering q Y(E(D)) — E(D) is classified by the map: E(D)
_, BII induced from the homomorphism j,: 7;(E(D)) » IT = my(E(Lx I 1 D)).
Here j, factors through the inclusion £:Z, — II:
n(ED) 3 T

6"\ f£
z,

The pullback of the universal IT-bundle EIT — BII by # is of the form
EZ, x I1 - BZ,.In fact, since EZ, = EII, the map (u, g) — ug (ueEZ,, gell)

pr

is defined from EZ, X I1 to EII. The map induces a I1-bundle map from
EZ, X I1 — BII to EII — BIL. On the other hand the covering induced from

the homomorphism 7 : n,(E(D)) — Z, is exactly the Z,-covering E(D), — E(D).
These prove the claim.
Consequently we have a decomposition

(5.7) E(LxI4D) = E(LxI)u E(D), x 10,

where E(Lxl) and E(D), X Il are pasted together along D" x S! x IT

equivariantly embedded in their boundaries. The condition (1) means that
E(D), is a homology circle. This together with (5.7) tells us that i: E(LXI)

— E(Lx I §D) induces an isomorphism on homology as Z[II]-modules.
Hence i is a homotopy equivalence.

The decomposition (5.7) also tells us that
(i) = p,t,(D"3, D)  up to sign.

Hence t(i) = 0 by the condition (2). Therefore E(L x I § D) is an s-cobordism
relative boundary. The theorem then follows from Lemma 1.6. Q.E.D.

A torsion 1,(S""% K) is defined similarly to t,(D"*3 D) if (S"*2 K),
is a homotopy (n+2)-sphere. The following theorem is an extension of
Proposition 4.2.
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THEOREM 5.8. Suppose <m> is of order p (p may be equal to 1)
for (M"*2 L") and n > 4. Let a, , =2 if n=0(4) and p is even,
and let a, , = 1 otherwise. Then a, ,(S"*? K)eIy(M, L) if

(1) o(S""2, K) = 0 incase n is odd.
(2) (S""% K), is a homotopy (n+2)-sphere,
(3)  an s T,(S"T% K) = 0

where ., is the same as in Theorem 5.2.

Proof. The argument developed in Steps 1, 2, and 3 of the proof of
Proposition 4.2 still works. Step 4 needs a little modification. Instead of
(4.10) we have

~

E(L #K) = E(L) U E(K), x I

(59) hy l l Id l hp x Id

Zp

E(L #S") = E(L) u E(S"), x 11 :

(see (5.7)) where h,: E(K), — E(S"), denotes the lifting of h to the Z -covers.
Since h, is a homology equivalence, the above diagram tells us that ﬁl
is a homotopy equivalence.

It also tells us that

w(hy) = — peT, (8% K),

which vanishes by the condition (3). Hence h,: E(L#K) —» E(L#S") is a
simple homotopy equivalence.

Step 5 also needs some modification. We need to replace o and P
by the canonical epimorphism v: Z — Z, and p: Z, — II respectively. Then
we have

o(h) = H*’Y*G(h) .

Here we distinguish three cases to observe the value o(h).

Case 1. The case where n is odd. In this case the trivial homomorphism
a:Z — 1 induces an isomorphism L,,s(Z,1) - L,,5(1,1) (W11, 13A.8]).
As observed in Step 5 of the proof of Proposition 4.2, a,(c(h)) vanishes.
Hence o(h) = 0, so o(h) = 0.

Case 2. ‘The case where n = 2 (4) or p is odd. According to Wall [W12]
or Bak [Ba], L,,5(Z,, 1) = 0 in this case. Since y,o(h) lies in L, 3(Z,, 1),
v,0(h) = 0 and hence o(h) = 0.
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Case 3. The case where n=0(4) and p is even. In this case
L,+3Z,,1) ~ Z,. Since the value v,0(h) € L,+3(Z,, 1) is additive with
respect to connected sum, it necessarily vanishes for (S"*2 K) # (S""2, K).

The rest of the argument is the same as that in Step 5. This proves
the theorem. Q.E.D.
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