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n,(E(LxnDj)än^EiLxI))<*>tc^JS^))

~ 7ti(£(L x /)) * (uj^D))/< m>)

where the latter isomorphism is because <m> 1 in nx(E(Lx I)) by the

assumption. Since n1(E(D))/<m>^7r1(DB + 3) ~ {1}, we have

(3.8) ti^ECL x / ç D)) ~ 7t!(£(L x /)) ~ %(£(£))

Here the inclusion map i : E(L) E(L) x {0} -* E{L x induces the

isomorphism.
We shall observe that i is a simple homotopy equivalence. For that

purpose we consider the lifting of i to the universal covers. Since the map

Ki(E{D)) ni(E{L xi ÏD)) induced by the inclusion map is trivial as observed

above, it follows from (3.7) that

(3.9) £(Lx/(D) É(L x /) u E(D) x II

where II n^EiLxI i] D)) tc1(M—L) and E{LxI) and £(D) x II are

pasted together II-equivariantly along D" + 1 x S1 x II embedded in their
boundaries. This means that : Hq(Ë(L) ; Z) - Hq(É(L x I 1] D) ; Z) is an

isomorphism as Z[II]-modules. Hence i^: nq(E(L)) -> nq(E(Lx I lj D)) is an

isomorphism by Namioka's theorem (see [Wll, § 4]) and hence i is a

homotopy equivalence.
The assumption <m> =1 together with (3.9) tells us that the Whitehead

torsion x(i) g Wh(H) of the map i comes from an element of Wh(l) through
the map : Wh(l) Wh(Tl) induced from the inclusion 1 -> n. However
Wh( 1) 0 and hence x(z) 0. This shows that E(L x I Ij D) is an s-cobordism
relative boundary. The proposition then follows from Lemma 1.6. Q.E.D.

Proposition 3.6 gives a complete answer to the case where n is even

^ 4. It would be interesting to ask if the same conclusion still holds in
the case n 2.

In the next section we will improve Proposition 3.6 when n is odd ^ 5.

§4. An improvement

Throughout this section we assume n is odd ^ 5. Let Vn + 1 be a Seifert
surface of an rc-knot K in Sn + 2. The normal bundle to F in Sn+2 is
trivial. We give the stable normal bundle of Sn + 2 a canonical framing so
that V can be viewed as a framed manifold.
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Remember that dV K Sn. We make V contractible by framed

surgery without touching the boundary. As is well known this is always
possible in case dim V n + 1 is odd. But in case n + 1 is even, we
encounter an obstruction which is detected by

Sign V g Z if n + 1 0 (4)

c(V) e Z/2Z if n + 1 2 (4)

where c(V) is the Kervaire invariant of V.

Remark 4.1. Since dL is dilfeomorphic to Sn, c(F) 0 if n + 1 is not
of the form 2k — 2 ([Br]).

One can see that Seifert surfaces of K are framed cobordant relative

boundary to each other. Hence the values Sign V and c(V) are independent
of the choice of V. We set

a(Sn + 2, K)
Sign V if n 4- 1 0 (4),

c(V) if n + 1 2k — 2 for some k,

0 otherwise.

Proposition 4.2. Suppose <m> 1 /or (Mn + 2,Ln) and n is

odd ^ 5. TTzen (Sn + 2, K) e I0(M, L) if a(Sn + 2,K) 0. In particular,
70(M, L) — /neither n + 1 0 (4) nor n + 1 2k — 2 for some k.

Combining this with Theorem 1.1, we obtain

Corollary 4.3. Suppose <m> 1 for (Mn+2,Ln) and n + 1

0(4)(n/3). Then (Sn + 2, K) e I0(M, L) if and only if a(Sn + 2,K) 0.

The rest of this section is devoted to the proof of Proposition 4.2.

Let K be an .n-knot in Sn+2 such that <j(Sn + 2, K) 0. We shall construct
an s-cobordism relative boundary between E(L K) and E(L). The argument
is rather more complicated than that of Proposition 3.6. We need some

knowledge of surgery theory.

Step 1. Let Vn+1 be a Seifert surface of K. Push the interior of V
into the interior of Dn + 3 to make it transverse to the boundary Sn+2 of
Dn + 3. We may assume that V is (n — l)/2-connected, if necessary, by doing
framed surgery of V within D" + 3. In fact, this is the method used to prove
that any n-knot is concordant to a simple knot (see [KW, Chap. IV]).

In the attempt to make V (n + l)/2-connected (and hence V is contractible

by the Poincaré duality) by framed surgery of V within Dn + 3, one encounters

an obstruction. Namely a bunch of embedded (n + l)/2-spheres in V does
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not necessarily extend to embedded (n + 3)/2-disks whose interior lies in
Dn+3 - V.

But if we do framed surgery of V at the outside of Dn + 3 without
touching boundary, i.e. if we do surgery on framed embeddings

(,S{n+1)l2 x D(n+1)/2 x D2, S{n + 1)l2 x D{n + 1)/2 x {0}) (Dn + 3, V),

then we can make V (n + l)/2-connected because the obstruction is exactly
<j{Sn + 2,K) and it vanishes by the assumption. The ambient space is,

however, not Dn + 3
any more. We denote by (W, D) the resulting framed

oriented pair, where D is diffeomorphic to Dn + 1.

Step 2. We construct a boundary preserving map h :

(W ; N(D), E(D)) - (Dn + 3
; N(Dn +1), E(Dn +1))

such that

(4.4) h\dW: dW Sn + 2 -> dDn + 3 S"+2 is a homotopy equivalence,

(4.5) h I
N(D) : N(D) N(Dn + 1) is a diffeomorphism,

where N denotes a closed tubular neighborhood and Dn+1 cz Dn+3 is
standardly embedded.

Since D is diffeomorphic to Dn + 1, there is a diffeomorphism

g:(Dn + 1xD2, Dn + 1x{0}) -> (N(D), D).

Here D"+1 x D2 can be naturally identified with A^(D" + 1); so we define

(4-6) /Î I — Q
1

First we extend h \dWnôN{D) h\dE{K) to a map from E{K) to E(ÔDn + 1)

E(Sn). The obstruction lies in groups

H«+\E{K\ dE(K);nq{E(Sn))).

Since E(Sn) is homotopy equivalent to S1, it suffices to prove

(4.7) Hq + 1(E(K), dE(K) ; Z) 0 for q 0, 1

On the other hand we have

Hq+1(E(K),dE(K); Z) ~ Hq+1{Sn+\N(K); Z) (by excision)

^Hq{N(K); Z) (if g +1 <n + 2)

^ H^(S" ; Z)

(if ^ ^ n)
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Hence (4.7) is satisfied as n ^ 5.

Consequently we can extend h \
N{D) to a map

h\N(D)udw-{N(D)udW, dW) (N{Dn + 1)vdDn + \ dDn + 3).

The local degree of h\dW: dW dDn + 3 is one because h\dWnN{D) h\N{K):

N(K) -» N(Sn) is a diffeomorphism by (4.6) aiid h(E(K)) c= E(Sn) by the

construction. Since dW and dDn + 3.are both Sn + 2> h\ qw is a homotopy
equivalence. Hence (4.4) is satisfied. Moreover (4.5) is also satisfied by (4.6).

In the sequel it suffices to extend h\dE(D) to a map from E(D) to E(Dn + 1).

This time the obstruction lies in groups

Hq + 1(E(D), dE(D);nq(E(D" + 1)j).

Since E(Dn + 1) is homotopy equivalent to S1, it suffices to prove

(4.8) Hq + 1(E{D\ dE(D) ; Z) 0 for q 0, 1

By excision we have

Hq+1(E{D), dE(D) ; Z) ~ Hq+1(W, N(D)udW; Z).

Remember that W is obtained from Dn + 3 by (n+ l)/2-surgery. It implies that

Hi(W; Z) 0 if i / (n + l)/2 + 1

In particular

Hf(IT;Z) - 0 for i ^ 3

as n ^ 5. Therefore it follows from the exact sequence of the pair
(W, N(D)udW) that

Hq+1(W,N{D)KjdW; Z) ~ Hq{N(D)\jdW ; Z) for g < 2.

Here the Mayer-Vietoris exact sequence of the triad (iV(Z))udJr ; AT(D), dlT)
shows that

Hq (N(D)udW; Z) 0 for 0, 1,

because iV(D) is contractible, dW Sn + 2, and iV(D) n 5IT Sn x S1.

Hence (4.8) is satisfied, and we have obtained the desired map h.

Step 3. Since W is framed, the framing of the stable normal bundle v(W)
of W induces a stable bundle map b:v(W) - v(D" + 3) which covers h. The

triple J* (W,h,b) is called a normal map.
The identity map Id : (M, L) x I -> (M, L) x I gives a normal map

where the stable bundle map is also the identity. We shall denote the normal
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map by @Jd — {{M, L)x I, Id, Id). The maps h and Id are both diffeo-

morphisms on N(D) and N(LxI) respectively; so one can do the boundary
connected sum of & and @Id at points of K and L x {1}. This yields

a new normal map @Id \ (M x I \W, Id ^h, Id \ b). Here we naturally
identify the target space (M, L) x I 1? (Dn + 3, Dn + 1) with (M, L) x I. Since

Id I h is a diffeomorphism ön N(L x I ^ D), it gives a product structure on

N(L x IK D). Thus we get a cobordism E(L x I i] D) relative boundary between

E(L tt K) and E(L).

Step 4. Id tj h I
E{L) : E(L) - E(L) x {0} (the 0-level) is the identity; so it

is a simple homotopy equivalence. We shall observe that h± Id \ h \EiL#K):

E(L$ K) E(L) x {1} (the 1-level) is also a simple homotopy equivalence.
We have a decomposition

E{L JKK) E(L) u E(K)

in the same sense as (3.7). Hence, similarly to (3.8) one can see

(4-9) n^EiLÏK)) ~ tt^L))
where the inclusion map induces the isomorphism.

We can view E(L) x {1} as E(L ft Sn) and we also have

E(L tt Sn) E(L) u E(Sn).

Then the map hx can be viewed as the identity on E(L) and h on E{K).
This together with (4.9) shows that ttK)) -> n^EfL ft Snj) is an
isomorphism.

As before we consider the map hx : É(L # K) E(L tt Sn) lifted to the
universal covers. Since <m> 1, we have a diagram

E(L tt K) É(L) u E(K) x n
(4.10) I I Id I h\EiK)xld

Ê(Ltt Sn) É(L) u E(Sn) x U,

where n 7u1(M —L) as before. Since h\E{K) is a homology equivalence,
the above diagram tells us that hls,:Hq(È(L Z) - Z) is an
isomorphism as Z[IT]-modules. Therefore is a homotopy equivalence by
the same reason as before.

The assumption <m> 1 together with the above diagram tells us that
tf/ij e IT7î(n) comes from an element of Wh(l). Hence 0 as
Wh{l) 0.
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Step 5. By step 4 h Id ïh\E{LxI^D): E(Lx I D)-+E(Lx I ^ Dn+1)

E(L x I) is a simple homotopy equivalence on the boundary. We convert
h into a simple homotopy equivalence by surgery without touching the

boundary. The obstruction <j(h) lies in an L-group L„+3(II, 1) where 1 denotes

the trivial homomorphism from II to Z2 (note, since M is oriented and
hence so is E(LxI\ the orientation homomorphism: II n^EiLxI)) — Z2
is trivial).

We have a diagram similar to (4.10):

E(L x I Ij D) E(L x I) u £(D)

M I 4 h

E(L xHD" + 1) E(L x /) u £(D" + x).

The surgery obstruction a(h) to converting h to a. simple homotopy
equivalence by surgery without touching the boundary lies in Ln + 3(Z, 1)

because n1(E(Dn + 1)) is isomorphic to Z. The above diagram together with
the assumption <m> =1 tells us that

ß*a*o(h)

where a^: Ln+3(Z, 1) -+ Ln+3( 1, 1) and ß^: LB+3(1, 1) ^ Ln + 3(U, 1) are the

homomorphisms induced from the trivial homomorphisms a : Z - 1 and

ß : 1 -> II respectively. It is well-known that

L (1 1) ^ 4Z if » + 3s°(4)'
"+3( ' '\z2if 3 S 2(4).

As easily observed ais given by

Sign W if n + 3 0 (4)

c{W) if n + 3 2 (4)

through the above isomorphism. Remember that W is framed cobordant to
Dn + 3 relative boundary by the construction. Therefore those invariants
vanish and hence o(h) 0.

Consequently we have obtained a cobordism U' relative boundary
between E(L tf K) and E(L) together with a simple homotopy equivalence

F:U' E(L x I) which is the identity on the 0-level. Let i0 : E(L) -+ U'
and j0 : E(L) -> E(L x I) be the inclusion maps from the 0-level to the

cobordisms. Since F ° i0 j0 ° Id where Id : E(L) -> E(L) denotes the identity

map, we have
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t (F)+ F^x(i0)tOo) + j0*<Id)

(see [Ml, Lemma 7.8]). Here F,j0,andId are all simple homotopy

equivalences; so these Whitehead torsions vanish. Hence it follows that

x(j0) 0, because F#: Whfa^U')) -* Whin^EfL x I)) is an isomorphism.

This means that U' is an s-cobordism. Therefore (Sn + 2, K) e I0(M, L) by

Lemma 1.6. Q.E.D.

§ 5. Type 3 case

In this section we treat the case where <m> or [m] is of order p

(p is not necessarily a prime number). We begin with

Lemma 5.1. Suppose [m] is of order p. Then if (Sn + 2, K) e I(M, L),

then (Sn + 2, K)p is a homotopy (n +2)-sphere.

Proof Let r be the order of Tor H^M- L ; Z), and let y be the canonical

epimorphism —L) —» HfM — L;Z) ® Zr. Since the order of y(<m>)
is p, we obtain the desired result by an argument similar to the proof of
Lemma 2.1. Q.E.D.

If p ^ 2, there are infinitely many knots (Sn + 2,K) such that (Sn + 2,K)P

is not a homotopy (n + 2)-sphere ; so Lemma 5.1 shows that I(M,L) c jT„
for such (M, L).

The rest of this section is devoted to looking for a non-trivial knot in

J(M, L) or I0(M, L). We will extend Proposition 3.6 and 4.2 to the case

where <m> is of order p. Lemma 5.1 reminds us of counterexamples to
the generalized Smith conjecture.

Let (Sn + 2,K) be an n-knot which bounds a disk pair (.Dn + 3,D) such

that (Dn+3,D)p is a homotopy (n + 3)-disk. Since (Sn+2,K)P is the boundary
of (Dn + 3,D)p, (iS"+2, K)p is a homotopy (n + 2)-sphere. If n + 3 ^ 5, then

(D" + 3, D)p is diffeomorphic to Dn + 3 and hence (S" + 2, K)p is diffeomorphic to
Sn + 2.

The p-fold branched cyclic covering (Dn+3, D)p supports a Zp-action with
the branch set D as the fixed point set. Let E(D)p be the exterior of D
in (Dn + 3,D)p and let p : S1 -> E(D)p be an equivariant embedding of a

meridian of D in E(D)p, where the standard free Zp-action is considered
on S1. Since p is a homology equivalence and equivariant, the Whitehead
torsion of p is defined in Wh(Zp). Clearly it is independent of the choice
of p; so we shall denote it by Tp(Dn + 3, D).

The following theorem is an extension of Proposition 3.6.


	§4. An improvement

