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ny(E(LxT§ D)) =~ ny(E(LxD) *_ m,(ED)

~ 1 (E(L x ) * (ny(E(D))/ <m>)

where the latter isomorphism is because <m> = 1 in n;(E(LxI)) by the
assumption. Since ;(E(D))/<m> =~ my(D""%) ~ {1}, we have

(3.8) ny(E(Lx I §D)) ~ my(E(Lx I)) ~ m,(E(L)) .

Here the inclusion map i: E(L) = E(L) x {0} - E(LxI §D) induces the
isomorphism.

We shall observe that i is a simple homotopy equivalence. For that
purpose we consider the lifting of i to the universal covers. Since the map
n,(E(D)) — my(E(L x I § D)) induced by the inclusion map is trivial as observed
above, it follows from (3.7) that

(3.9) E(LxI4D) = E(LxI)u E(D) x I

where T1 = n,(E(LxI D)) = ny(M—L) and E(LxI) and E(D) x II are
pasted together IT-equivariantly along D"*!' x S! x II embedded in their
boundaries. This means that f*:Hq(b:(L);Z)—)Hq(E(LxI 1D);Z) is an
isomorphism as Z[II]-modules. Hence i,: n,(E(L)) » m (E(Lx I D)) is an
isomorphism by Namioka’s theorem (see [WIl, §4]) and hence i is a
homotopy equivalence.

The assumption <m> = 1 together with (3.9) tells us that the Whitehead
torsion t(i) € Wh(II) of the map i comes from an element of Wh(1) through
the map: Wh(l) > Wh(IT) induced from the inclusion 1 — II. However
Wh(1) = 0 and hence 1(i) = 0. This shows that E(L x I §D) is an s-cobordism
relative boundary. The proposition then follows from Lemma 1.6. Q.E.D.

Proposition 3.6 gives a complete answer to the case where n is even
= 4. It would be interesting to ask if the same conclusion still holds in
the case n = 2.

In the next section we will improve Proposition 3.6 when n is odd > 5.

§4. AN IMPROVEMENT

Throughout this section we assume n is odd > 5. Let V"*! be a Seifert
surface of an m-knot K in S""2. The normal bundle to V in S$"*2 is
trivial. We give the stable normal bundle of $"*? a canonical framing so
that V' can be viewed as a framed manifold.



30 M. MASUDA AND M. SAKUMA

Remember that 0V = K = §". We make V contractible by framed
surgery without touching the boundary. As is well known this is always
possible in case dimV = n + 1 is odd. But in case n + 1 is even, we
encounter an obstruction which is detected by

Sign V e Z if n+1=0(@4)
cVyeZ/2Z if n+1=2@4

where ¢(V) 1s the Kervaire invariant of V.

Remark 4.1. Since 0V is diffeomorphic to S*, ¢(V) = 0 if n + 1 is not
of the form 2% — 2 ([Br)).

One can see that Seifert surfaces of K are framed cobordant relative
boundary to each other. Hence the values Sign V' and ¢(V) are independent
of the choice of V. We set

SignV  if n+1=0(),
o(S""%, K) = { V) if n+1=2%—2forsomek,
0 otherwise.

PROPOSITION 4.2. Suppose <m> =1 for (M"*? L") and n is
odd >=5. Then (S""%, K)ely,M,L) if o(S""% K) = 0. In particular,
Io(M,L) = A, ifneither n+1=0(@4) nor n+ 1 =2 —2 for some k.

Combining this with Theorem 1.1, we obtain

COROLLARY 4.3. Suppose <m> =1 for (M"** L") and n+ 1
= 0(4) (n#3). Then (S""2, K)elyM, L) if and only if o(S""2 K) = 0.

The rest of this section is devoted to the proof of Proposition 4.2.
Let K be an #n-knot in S"*? such that o(S"*2, K) = 0. We shall construct
an s-cobordism relative boundary between E(L K) and E(L). The argument
is rather more complicated than that of Proposition 3.6. We need some
knowledge of surgery theory.

Step 1. Let V"*! be a Seifert surface of K. Push the interior of V
into the interior of D""? to make it transverse to the boundary S"*? of
D"*3. We may assume that V is (n—1)/2-connected, if necessary, by doing
framed surgery of V within D"*3. In fact, this is the method used to prove
that any n-knot is concordant to a simple knot (see [KW, Chap. IV]).

In the attempt to make V' (n+ 1)/2-connected (and hence V is contractible
by the Poincaré duality) by framed surgery of ¥V within D"*3, one encounters
an obstruction. Namely a bunch of embedded (n+ 1)/2-spheres in V' does
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not necessarily extend to embedded (n+ 3)/2-disks whose interior lies in
Dt — V.

But if we do framed surgery of V at the outside of D"*3 without
touching boundary, i.e. if we do surgery on framed embeddings

(S(n+1)/2 X D(n+1)/2 X DZ’ S(n+1)/2 X D(n+l)/2 % {O}) — (Dn+3, V),

then we can make V (n+ 1)/2-connected because the obstruction is exactly
o(S"*2, K) and it vanishes by the assumption. The ambient space is,
however, not D"*® any more. We denote by (W, D) the resulting framed
oriented pair, where D is diffeomorphic to D" * 1.

Step 2. We construct a boundary preserving map h:
(W N(D), E(D)) — (D"*; N(D"*1), E(D"*1))
such that
(44)  h|sp:0W = S*""? 5 9D"*3 = §"*?2  is a homotopy equivalence,
4.5  hlywp: N(D) - N1 is a diffeomorphism,

where N denotes a closed tubular neighborhood and D"*! <= D"*3 is
standardly embedded.

Since D is diffefomorphic to D"*?, there is a diffefomorphism
g: (D""tx D?, D"" 1 x {0}) - (N(D), D).
Here D"*! x D? can be naturally identified with N(D"*'); so we define
(4.6)

h|N(D) = g_l

First we extend hownonp) = hloew) to a map from E(K) to E@D"*Y)
= E(S"). The obstruction lies in groups

H*"YE(K), 0E(K); m, (E(S" ) -
Since E(S") is homotopy equivalent to S, it suffices to prove
(4.7) Hi"YE(K), 0E(K);Z) = 0 for g =0,1.
On the other hand we have
H*"Y(E(K), 0E(K); Z) ~ H* {(S"*2, N(K); Z) (by excision)

~ HYN(K); Z) if g+1<n+2)
~ HYS"; Z)

=0 if  g+#n)
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Hence (4.7) 1s satisfied as n > 5.
Consequently we can extend h| yp, to a map

h noyoow : (N(D)UIW, OW) — (N(D"+)uoD"+3, oD"*3) .

The local degree of h|zp: W — 0D""2 is one because h|,pwanwy = Hlna:
N(K) — N(S") is a diffeomorphism by (4.6) and h(E(K)) < E(S") by the
construction. Since dW and 0D"*3. are both S"*2 h|,, is a homotopy
equivalence. Hence (4.4) is satisfied. Moreover (4.5) is also satisfied by (4.6).
In the sequel it suffices to extend h|,pp, to a map from E(D) to E(D""1).
This time the obstruction lies in groups

H?"YE(D), 0E(D); n,(E(D" 1)) .
Since E(D""!) is homotopy equivalent to S?, it suffices to prove
(4.8) H"YE(D),0E(D);Z) =0 for ¢q =0,1.
By excision we have
H**YE(D), 0E(D); Z) ~ H*" (W, N(D)uoW ;Z).

Remember that W is obtained from D"*3 by (n+ 1)/2-surgery. It implies that

~

HW;Z)y=0 if i#m+1)2+1.
In particular
HW:Z) =0 for i<3
as n > 5. Therefore it follows from the eiéct sequence of the pair
(W, N(D)yudW) that
HY YW, N(D)UOW ; Z) ~ HY(N(D)udW ;Z) for q<2.
Here the Mayer-Vietoris exact sequence of the triad (N(D)uoW ; N(D), 0W)
shows that
H? (ND)UOW;Z) =0 for ¢ =0,1,

because N(D) is contractible, oW = S"*2 and N(D) n 0W = S" x S
Hence (4.8) is satisfied, and we have obtained the desired map h.

Step 3. Since W is framed, the framing of the stable normal bundle v(W)
of W induces a stable bundle map b: v(W) — v(D"*?3) which covers h. The
triple # = (W, h, b) is called a normal map.

The identity map Id:(M,L) x I - (M, L) x I gives a normal map
where the stable bundle map is also the identity. We shall denote the normal
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map by %, = (M, L)x I, 1d, Id). The maps h and Id are both diffeo-
morphisms on N(D) and N(L x I) respectively; so one can do the boundary
connected sum of # and %,, at points of K and L x {1}. This yields
a new normal map %t B = (MxI14iW,IdYh,Id 1b). Here we naturally
identify the target space (M, L) x I4(D"*3,D"*1) with (M, L) x I. Since
Id# h is a difftomorphism on N(L x It D), it gives a product structure on
N(L x I § D). Thus we get a cobordism E(L x I § D) relative boundary between
E(L #K) and E(L).

Step 4. Id & h|gy,: E(L) - E(L) x {0} (the O-level) is the identity; so it
‘is a simple homotopy equivalence. We shall observe that hy = Id 1 h| g u,):
E(L#K) - E(L) x {1} (the 1-level) is also a simple homotopy equivalence.
We have a decomposition

E(L #K) = E(L) u E(K)
in the same sense as (3.7). Hence, similarly to (3.8) one can see
4.9) 0y (E(L £ K)) ~ m,(E(L))

where the inclusion map induces the isomorphism.
We can view E(L) x {1} as E(L# S") and we also have

E(L#S") = E(L) U E(S").

Then the map h; can be viewed as the identity on E(L) and % on E(K).
This together with (4.9) shows that hy,: m;(E(L #K)) > m,(E(L #S")) is an
isomorphism. ‘

As before we consider the map ﬁlzﬁ(LﬁK) — E(LﬁS") lifted to the
universal covers. Since <m> = 1, we have a diagram

~

E(L#K) = E(L) U E(K) x II
(4.10) R | | HlEao x1d

E(L#s") = E(L) U E(S") x I,
where IT = n;(M—L) as beforg. Since ~h | ey 18 a homology equivalence,
the above diagram tells us that h,,: H,(E(L 4 K); Z) — H,(E(L#S");Z)is an
isomorphism as Z[IT]-modules. Therefore hy is a homotopy equivalence by
the same reason as before.

The assumption <m> = 1 together with the above diagram tells us that

©h;) e Wh(IT) comes from an element of Wh(1). Hence t(hy) = 0 as
Wh(1) = 0.
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Step 5. By step 4 h = Id4h|gyxyp): E(Lx14D)— E(LxI§D")
= E(Lx ) is a simple homotopy equivalence on the boundary. We convert
h into a simple homotopy equivalence by surgery without touching the
boundary. The obstruction o(#) lies in an L-group L, 5(IT, 1) where 1 denotes
the trivial homomorphism from Il to Z, (note, since M is oriented and
hence so is E(L x I), the orientation homomorphism: IT = 7,(E(Lx I)) > Z,
1s trivial).

We have a diagram similar to (4.10):

E(Lx I D) = E(Lx1I) v E(D)

h l l Id l h
E(LxItD"*Y) = E(LxI) U E(D"*Y).

The surgery obstruction o(h) to converting h to a simple homotopy
equivalence by surgery without touching the boundary lies in L, 5(Z, 1)
because m;(E(D"*1) is isomorphic to Z. The above diagram together with
the assumption <m> = 1 tells us that

G(E) = By, 0(h)

where o, :L,.3(Z,1) = L,+3(1,1) and B,: L,+3(1,1) = L, 5(I1, 1) are the
homomorphisms induced from the trivial homomorphisms «:Z — 1 and
B: 1 — IT respectively. It is well-known that

Z if n+3=0(4),

L 1,1) ~
SRS {zz if n+3=204).

As easily observed o, c(h) is given by

SignW if n+3=0(4)
(W) if n+3=204)

through the above isomorphism. Remember that W is framed cobordant to
- D"*3 relative boundary by the construction. Therefore those invariants
vanish and hence o(h) = 0.

Consequently we have obtained a cobordism U’ relative boundary
between E(L #K) and E(L) together with a simple homotopy equivalence
F:U — E(LxI) which is the identity on the O-level. Let iy: E(L) - U’
and jo: E(L) » E(LxI) be the inclusion maps from the O-level to the
cobordisms. Since F o iy, = j, o Id where Id: E(L) — E(L) denotes the identity

map, we have
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T(F) + F*T(io) = T(jo) + jO*T(Id)

(see [Ml, Lemma 7.8]). Here F, jo, and Id are all simple homotopy
equivalences; so these Whitehead torsions vanish. Hence it follows that
1ig) = 0, because F,: Wh(rn,(U") - Whn,(E(LxI)) is an isomorphism.
This means that U’ is an s-cobordism. Therefore (S"*?, K) € Io(M, L) by
Lemma 1.6. Q.E.D.

§ 5. TyYPE 3 CASE

In this section we treat the case where <m> or [m] is of order p
(p is not necessarily a prime number). We begin with

LeMMA S5.1. Suppose [m] is of order p. Then if (S*"? K)eI(M, L),
then (S"*2,K), is a homotopy (n+2)-sphere.

Proof. Let r be the order of Tor H,(M —L;Z), and let v be the canonical
epimorphism nn,(M —L) » H(M—L;Z) ® Z,. Since the order of v(<m>)
is p, we obtain the desired result by an argument similar to the proof of
Lemma 2.1. Q.E.D.

If p > 2, there are infinitely many knots (S**2, K) such that (§""?, K),

is not a homotopy (n+2)-sphere; so Lemma 5.1 shows that I(M, L) = A,
for such (M, L). 4

The rest of this section is devoted to looking for a non-trivial knot in
I(M, L) or I4(M, L). We will extend Proposition 3.6 and 4.2 to the case
where <m> is of order p. Lemma 5.1 reminds us of counterexamples to
the generalized Smith conjecture.

Let (S""2, K) be an n-knot which bounds a disk pair (D"*?, D) such
that (D"*3, D), is a homotopy (n-+3)-disk. Since (§**?, K), is the boundary
of (D"*3, D),, ("% K), is a homotopy (n+2)-sphere. If n + 3 > 5, then
(D"*3, D), is diffeomorphic to D"*? and hence (§**?, K), is diffeomorphic to
A

The p-fold branched cyclic covering (D"">, D), supports a Z,-action with
the branch set D as the fixed point set. Let E(D), be the exterior of D
in (D"3 D), and let p:S' — E(D), be an equivariant embedding of a
meridian of D in E(D),, where the standard free Z,-action is considered
on S'. Since p is a homology equivalence and equivariant, the Whitehead
torsion of p is defined in Wh(Z,). Clearly it is independent of the choice
of p; so we shall denote it by t,(D"*3, D).

The following theorem is an extension of Proposition 3.6.
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