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KNOTTING SUBMANIFOLDS 27
§ 3. TYPE 2 CASE

In this section and the next section, we treat the case where a meridian
of L" in M"*2 is null homotopic in M — L. The following lemma follows
from [Li, Lemma 1]. We shall give an alternative proof which is interesting
by itself (the argument is also given in [Ms, Theorem 4.2]).

LEMMA 3.1. I(S"x S% S"x{x}) = A", if n= 3.

Proof. Let (S"*2, K) be an n-knot and consider (S"xS? S"x {*})
4 (S""2 K). A subset S" x {*} K uU {xo} x S* (x0eS") is exactly the
wedge sum of S” and S% As easily observed the complement of an open
regular neighborhood of the subset is contractible and hence diffeomorphic
to D""% as n + 2 > 5. This means that one can express

(S"x 82, 8"x {*}) #(S""%, K) = (S"x S%, §"x {*}) # =

where X is a homotopy (n+ 2)-sphere and the connected sum at the right
hand side is done away from the submanifold S" x {*}.

On the other hand the ambient manifold must be diffefomorphic to
S" x S? because it is the connected sum of §” x §? with S""2. These
mean that X belongs to the inertia group of §” x S2. But the group is trivial
([Sc]), so X must be the standard sphere. This proves the lemma. Q.E.D.

We shall denote by <m> the class in n;(M—L) represented by a
meridian of L in M.

LEMMA 3.2. Suppose M is spin, L is diffeomorphic to S", and
nz3 If <m> =1 for (M,L), then (M,L) = (S"xS% S"x{x})§ M
with a closed oriented manifold M’ of dimension n + 2.

Proof. Since <m> =1 and dim M > 5, the meridian m bounds a
2-disk in M — L. Therefore L V S? is embedded in M. The normal bundle
to L in M is trivial, because it is classified by the Euler class sitting
in H¥L;Z) and H¥L;Z) = 0 as L = $" and n > 3. The normal bundle
of the embedded S is also trivial, because it is classified by the second
Stiefel-Whitney class and it vanishes as M is spin. Hence the closed regular
neighborhood of L V S? in M is diffeomorphic to that of §” V $? naturally
embedded in S" x S% In particular its boundary is diffeomorphic to §"*!.

This implies the lemma. Q.E.D.
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Remark 3.3. A similar argument works even if M is not spin. But this
time two cases arise according as the normal bundle of the embedded S?*
is trivial or not. If it is trivial, then the same conclusion as above holds.
If it 1s not trivial, we have

(M, L) = (S"%S2, S") 4 M’ .

Here S” X S* denotes the total space of the sphere bundle associated with
the nontrivial (n+ 1)-dimensional vector bundle over S? (note that it is
unique as 7,(SO(n+1)) ~ Z, for n > 2) and the submanifold S" denotes a
fiber.

Combining Lemma 3.1 with 3.2, we obtain

THEOREM 3.4. Suppose M is spin, L is diffeomorphic to S", and
n=3 Thenif <m> =1 for (M,L), then IM,L) = X,.

Remark 3.5. If the inertia group I(S"xS?) is trivial, then the same
argument as the proof of Lemma 3.1 proves that I(S"x S?, S") = 4, and
hence one could drop the spin condition for M by Remark 3.3.

If L # S", then the above argument does not work. For a general L
we construct an s-cobordism between pairs (M, L) §(S"*2, K) and (M, L)
and apply lemma 1.6. We denote the set of all null-cobordant n-knots
by A0 According to Kervaire [K] (cf. [KW, Chap. IV]) X, = A°°
if n is even, but A7, # A0 if n is odd.

PROPOSITION 3.6. Suppose <m> =1 for (M"*? L") and n > 3.
Then IoM, L) contains 0. In particular, if n is even > 4, then
Io(M,L) = IM,L) = XA,.

Proof. Let (S"*2, K) bound a disk pair (D""3 D), where D is a
(n+1)-disk. The boundary connected sum (M, L) x I§(D""3 D) at the
1-level gives a cobordism between (M, L) and (M, L) #(S"*2, K).

We shall check the conditions (1) and (2) in Lemma 1.6 for this
cobordism. First, since D is diffeomorphic to D"** L x I 1D is diffeo-
morphic to L x I; so (1) is satisfied. Hence E(L xI §D) gives a cobordism
relative boundary between E(L) and E(L #K). We note that

(3.7) E(LxI4D) = E(LxI)u E(D)

where E(L x I) and E(D) are pasted together along D"*! x S! embedded in
their boundaries. The S* factor corresponds to meridians of L x I and D.
Then the van Kampen’s theorem says that
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ny(E(LxT§ D)) =~ ny(E(LxD) *_ m,(ED)

~ 1 (E(L x ) * (ny(E(D))/ <m>)

where the latter isomorphism is because <m> = 1 in n;(E(LxI)) by the
assumption. Since ;(E(D))/<m> =~ my(D""%) ~ {1}, we have

(3.8) ny(E(Lx I §D)) ~ my(E(Lx I)) ~ m,(E(L)) .

Here the inclusion map i: E(L) = E(L) x {0} - E(LxI §D) induces the
isomorphism.

We shall observe that i is a simple homotopy equivalence. For that
purpose we consider the lifting of i to the universal covers. Since the map
n,(E(D)) — my(E(L x I § D)) induced by the inclusion map is trivial as observed
above, it follows from (3.7) that

(3.9) E(LxI4D) = E(LxI)u E(D) x I

where T1 = n,(E(LxI D)) = ny(M—L) and E(LxI) and E(D) x II are
pasted together IT-equivariantly along D"*!' x S! x II embedded in their
boundaries. This means that f*:Hq(b:(L);Z)—)Hq(E(LxI 1D);Z) is an
isomorphism as Z[II]-modules. Hence i,: n,(E(L)) » m (E(Lx I D)) is an
isomorphism by Namioka’s theorem (see [WIl, §4]) and hence i is a
homotopy equivalence.

The assumption <m> = 1 together with (3.9) tells us that the Whitehead
torsion t(i) € Wh(II) of the map i comes from an element of Wh(1) through
the map: Wh(l) > Wh(IT) induced from the inclusion 1 — II. However
Wh(1) = 0 and hence 1(i) = 0. This shows that E(L x I §D) is an s-cobordism
relative boundary. The proposition then follows from Lemma 1.6. Q.E.D.

Proposition 3.6 gives a complete answer to the case where n is even
= 4. It would be interesting to ask if the same conclusion still holds in
the case n = 2.

In the next section we will improve Proposition 3.6 when n is odd > 5.

§4. AN IMPROVEMENT

Throughout this section we assume n is odd > 5. Let V"*! be a Seifert
surface of an m-knot K in S""2. The normal bundle to V in S$"*2 is
trivial. We give the stable normal bundle of $"*? a canonical framing so
that V' can be viewed as a framed manifold.
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